In nitrile reduction a nitrile is reduced to either an amine or an aldehyde with a suitable chemical reagent.
Contents
Catalytic hydrogenation
The catalytic hydrogenation of nitriles is often the most economical route available for the production of primary amines. Catalysts for the reaction often include group 10 metals such as Raney nickel, palladium black, or platinum dioxide. However, other catalysts, such as cobalt boride, also can be selective for primary amine production:
R-C≡N + 2 H2 → R-CH2NH2Depending on reaction conditions, intermediate imines can also undergo attack by amine products to afford secondary and tertiary amines:
2 R-C≡N + 4 H2 → (R-CH2)2NH + NH33 R-C≡N + 6 H2 → (R-CH2)3N + 2 NH3Such reactions proceed via enamine intermediates. The most important reaction condition for selective primary amine production is catalyst choice. Other important factors include solvent choice, solution pH, steric effects, temperature, and the pressure of hydrogen inside the hydrogenation vessel.
Industrial significance
A commercial application of this technology includes the production of hexamethylenediamine from adiponitrile, a precursor to Nylon 66.
Non-catalytic routes to amines
Reducing agents for the non-catalytic conversion to amines include lithium aluminium hydride, lithium borohydride, diborane, or elemental sodium in alcohol solvents.
Non-catalytic routes to aldehydes
Nitriles can also be reduced to aldehydes. For example, one method, called Stephen aldehyde synthesis, uses Tin(II) chloride and hydrochloric acid to yield an aldehyde via the hydrolysis of a resulting iminum salt. Aldehydes can also form using a hydrogen donor followed by in-situ hydrolysis of an imine. Useful reagents for this reaction include formic acid with a hydrogenation catalysis or metal hydrides, such as sodium borohydride.
Electrochemical methods
Nitriles can also be reduced electrochemically.