![]() | ||
In group theory, a nilpotent group is a group that is "almost abelian". This idea is motivated by the fact that nilpotent groups are solvable, and for finite nilpotent groups, two elements having relatively prime orders must commute. It is also true that finite nilpotent groups are supersolvable. The concept is credited to work in the 1930s by Russian mathematician Sergei Chernikov.
Contents
Nilpotent groups arise in Galois theory, as well as in the classification of groups. They also appear prominently in the classification of Lie groups.
Analogous terms are used for Lie algebras (using the Lie bracket) including nilpotent, lower central series, and upper central series.
Definition
The definition uses the idea, explained on its own page, of a central series for a group. The following are equivalent formulations:
For a nilpotent group, the smallest
Equivalently, the nilpotency class of
It follows immediately from any of the above forms of the definition of nilpotency, that the trivial group is the unique group of nilpotency class 0, and groups of nilpotency class 1 are exactly the non-trivial abelian groups.
Examples
Explanation of term
Nilpotent groups are so called because the "adjoint action" of any element is nilpotent, meaning that for a nilpotent group G of nilpotence degree n and an element g, the function
This is not a defining characteristic of nilpotent groups: groups for which
An abelian group is precisely one for which the adjoint action is not just nilpotent but trivial (a 1-Engel group).
Properties
Since each successive factor group Zi+1/Zi in the upper central series is abelian, and the series is finite, every nilpotent group is a solvable group with a relatively simple structure.
Every subgroup of a nilpotent group of class n is nilpotent of class at most n; in addition, if f is a homomorphism of a nilpotent group of class n, then the image of f is nilpotent of class at most n.
The following statements are equivalent for finite groups, revealing some useful properties of nilpotency:
Proof: (a)→(b):By induction on |G|. If G is abelian, then for any H, NG(H)="G". If not, if Z(G) is not contained in H, then hZHZ−1h−1=h'H'h−1=H, so H·Z(G) normalizers H. If Z(G) is contained in H,then H/Z(G) is contained in G/Z(G). Note, G/Z(G) is a nilpotent group. Thus, there exists an subgroup of G/Z(G) which normalizers H/Z(G) and H/Z(G) is a proper subgroup of it. Therefore, pullback this subgroup to the subgroup in G and it normalizes H.(This proof is the same argument as for p-groups–—the only fact we needed was if G is nilpotent then so is G/Z(G)–—so the details are omitted.)
(b)→(c):Let p1,p2,......,ps be the distinct primes dividing its order and let Pi in Sylpi(G),1≤i≤s.Let P=Pi for some i and let N=NG(P). Since P is a normal subgroup of N, P is characteristic in N. Since P char N and N is a normal subgroup of NG(N),we get that P is a normal subgroup of NG(N). This means NG(N) is a subgroup of N and hence NG(N)=N.By (b) we must therefore have N=G,which gives (c).
(c)→(d):Let p1,p2,......,ps be the distinct primes dividing its order and let Pi in Sylpi(G),1≤i≤s.For any t,1≤t≤s we show inductively that P1P2…Pt is isomorphic to P1×P2×…×Pt. Note first that each Pi is normal in G so P1P2…Pt is a subgroup of G. Let H be the product P1P2…Pt-1 and let K=Pt,so by induction H is isomorphic to P1×P2×…×Pt-1. In particular,|H|=|P1|·|P2|·…·|Pt-1|.Since |K|=|Pt|,the orders of Hand K are relatively prime. Lagrange's Theorem implies the intersection of H and K is equal to 1.By definition,P1P2…Pt=HK,hence HK is isomorphic to H×K which is equal to P1×P2×…×Pt. This completes the induction.Now take t=s to obtain (d).
(d)→(a):Easy to obtain Z(P1×P2×…×Ps) is isomorphic to Z(P1)×…×Z(Ps), then G/Z(G)=(P1/Z(P1))×…×(Ps/Z(Ps)). Thus the hypotheses of (d) also hold for G/Z(G).If Pi≠1 then Z(Pi)≠1,so if G≠1,|G/Z(G)| is less than |G|. By induction,G/Z(G) is nilpotent, so G is nilpotent.
The last statement can be extended to infinite groups: if G is a nilpotent group, then every Sylow subgroup Gp of G is normal, and the direct product of these Sylow subgroups is the subgroup of all elements of finite order in G (see torsion subgroup).
Many properties of nilpotent groups are shared by hypercentral groups.