In mathematics, the Neville theta functions, named after Eric Harold Neville, are defined as follows: 
                              θ                      c                          (        z        ,        m        )        =                              2                                                π                                                              q              (              m              )                                      4                                                ∑                      k            =            0                                ∞                          (        q        (        m        )                  )                      k            (            k            +            1            )                          cos                          (                                    1              2                                ⋅                                                    (                2                k                +                1                )                π                z                                            K                (                m                )                                              )                                      1                          K              (              m              )                                                            1                          m                              4                                                                                          θ                      d                          (        z        ,        m        )        =        1                  /                2                                      2                                                π                                    (          1          +          2                                ∑                          k              =              1                                      ∞                                (          q          (          m          )                      )                                          k                                  2                                                              cos                                (                                                            π                  z                  k                                                  K                  (                  m                  )                                                      )                    )                                      1                          K              (              m              )                                                                            θ                      n                          (        z        ,        m        )        =        1                  /                2                                      π                                                2                                    (          1          +          2                      ∑                          k              =              1                                      ∞                                (          −          1                      )                          k                                (          q          (          m          )                      )                                          k                                  2                                                              cos                                (                                                            π                  z                  k                                                  K                  (                  m                  )                                                      )                    )                                      1                                          1                −                m                                            4                                                                          1                          K              (              m              )                                                                            θ                      s                          (        z        ,        m        )        =                              π                                                2                                                              q              (              m              )                                      4                                                ∑                      k            =            0                                ∞                          (        −        1                  )                      k                          (        q        (        m        )                  )                      k            (            k            +            1            )                          sin                          (          1                      /                    2                                                              (                2                k                +                1                )                π                z                                            K                (                m                )                                              )                                      1                                          1                −                m                                            4                                                                          1                          m                              4                                                                          1                          K              (              m              )                                              where:
                    K        (        m        )        =        EllipticK                (                              m                          )                                              K          ′                (        m        )        =        EllipticK                (                              1            −            m                          )                                    q        (        m        )        =                  e                      −            π            K            (            m            )                          /                                      K              ′                        (            m            )                                   is the elliptic nomeSubstitute z = 2.5, m = 0.3 into the above definitions of Neville theta functions(using Maple) once obtain the following(consistent with results from wolfram math).
                              θ                      c                          (        2.5        ,        0.3        )        =        −        0.65900466676738154967                                              θ                      d                          (        2.5        ,        0.3        )        =        0.95182196661267561994                                              θ                      n                          (        2.5        ,        0.3        )        =        1.0526693354651613637                                              θ                      s                          (        2.5        ,        0.3        )        =        0.82086879524530400536                                              θ                      c                          (        z        ,        m        )        =                  θ                      c                          (        −        z        ,        m        )                                              θ                      d                          (        z        ,        m        )        =                  θ                      d                          (        −        z        ,        m        )                                              θ                      n                          (        z        ,        m        )        =                  θ                      n                          (        −        z        ,        m        )                                              θ                      s                          (        z        ,        m        )        =        −                  θ                      s                          (        −        z        ,        m        )                NetvilleThetaC[z,m], NevilleThetaD[z,m], NevilleThetaN[z,m], and NevilleThetaS[z,m] are built-in functions of Mathematica No such functions in Maple.