Trade names Neo-rx MedlinePlus a682274 Molar mass 614.644 g/mol | AHFS/Drugs.com Monograph Routes ofadministration Topical, oral CAS ID 1404-04-2 | |
![]() | ||
Pregnancycategory US: D (Evidence of risk) ATC code A01AB08 (WHO) A07AA01 (WHO), B05CA09 (WHO), D06AX04 (WHO), J01GB05 (WHO), R02AB01 (WHO), S01AA03 (WHO), S02AA07 (WHO), S03AA01 (WHO) |
Neomycin is an aminoglycoside antibiotic found in many topical medications such as creams, ointments, and eyedrops. The discovery of neomycin dates back to 1949. It was discovered in the lab of Selman Waksman. Neomycin belongs to aminoglycoside class of antibiotics that contain two or more aminosugars connected by glycosidic bonds.
Contents
- How to get out acne definitely forever
- Uses
- Molecular biology
- Biosynthetic pathway
- Spectrum
- Composition
- Safety
- History
- DNA binding
- References
How to get out acne definitely forever
Uses
Neomycin is typically used as a topical preparation, such as Neosporin. It can also be given orally, where it is usually combined with other antibiotics. Neomycin is not absorbed from the gastrointestinal tract and has been used as a preventive measure for hepatic encephalopathy and hypercholesterolemia. By killing bacteria in the intestinal tract, it keeps ammonia levels low and prevents hepatic encephalopathy, especially prior to GI surgery. It has also been used to treat small intestinal bacterial overgrowth. It is not given via injection, as neomycin is extremely nephrotoxic (causes kidney damage), even when compared to other aminoglycosides. The exception is when neomycin is included, in very small quantities, as a preservative in some vaccines – typically 0.025 mg per dose.
Molecular biology
Neomycin resistance is conferred by either one of two aminoglycoside phosphotransferase genes. A neo gene is commonly included in DNA plasmids used by molecular biologists to establish stable mammalian cell lines expressing cloned proteins in culture; many commercially available protein expression plasmids contain neo as a selectable marker. Non-transfected cells will eventually die off when the culture is treated with neomycin or similar antibiotic. Neomycin or kanamycin can be used for prokaryotes, but geneticin (G418) is, in general, needed for eukaryotes.
Neomycin binds to the 30S subunit of the ribosome and inhibits translation of proteins from mRNA.
Biosynthetic pathway
First isolated from the Streptomyces fradiae and Streptomyces albogriseus in 1949 (NBRC 12773). Neomycin is a mixture of neomycin B (framycetin); and its epimer neomycin C, the latter component accounting for some 5–15% of the mixture. Neomycin has good activity against Gram-positive and Gram-negative bacteria, but is very ototoxic. Its use is thus restricted to oral treatment of intestinal infections.
Neomycin B is composed of four parts: D-neosamine, 2-deoxystreptamine (2-DOS), D-ribose, and L-neosamine.
Neomycin A, also called neamine, contains D-neosamine and 2-deoxystreptamine. Neamine is made from six genes, DOIS gene (btrC, neo7); L-glutamine:DOI aminotransferase gene (btrS, neo6); a putative glycosyltransferase gene (btrM, neo8); a putative aminotransferase (similar to glutamate-1-semialdehyde 2,1- aminomutase) gene (btrB, neo18); a putative alcohol dehydrogenase gene (btrE, neo5); another putative dehydrogenase (similar to chorine dehydrogenase and related flavoproteins) gene (btrQ, neo11). A deacetylase acting to remove the acetyl group on N-acetylglucosamine moieties of aminoglycoside intermediates (Neo16), still needs to be clarified (sequence similar to BtrD).
Next is the attachment of the D-ribose via ribosylation of neamine, using 5-phosphoribosyl-1-diphosphate (PRPP) as the ribosyl donor (BtrL, BtrP); glycosyltransferase (potential homologues RibF, LivF, Parf) gene (Neo15).
Neosamine B (L-neosamine B) is most likely biosynthesized in the same manner as the neosamine C (D-niosamine) in neamine biosynthesis, but with an additional epimerization step required to account for the presence of the epimeric neosamine B in neomycin B.
Spectrum
Similar to other aminoglycosides, neomycin has excellent activity against Gram-negative bacteria, and has partial activity against Gram-positive bacteria. It is relatively toxic to humans, and many people have allergic reactions to it. See: Hypersensitivity. Physicians sometimes recommend using antibiotic ointments without neomycin, such as Polysporin. The following represents MIC susceptibility data for a few medically significant Gram-negative bacteria.
Composition
Standard grade neomycin is composed of a number of related compounds including neomycin A (neamine), neomycin B (framycetin), neomycin C, and a few minor compounds found in much lower quantities. Neomycin B is the most active component in neomycin followed by neomycin C and neomycin A. Neomycin A is an inactive degradation product of the C and B isomers. The quantities of these components in neomycin vary from lot-to-lot depending on the manufacturer and manufacturing process.
Safety
In 2005–06, neomycin was the fifth-most-prevalent allergen in patch test results (10.0%).
History
Neomycin was discovered in 1949 by the microbiologist Selman Waksman and his student Hubert Lechevalier at Rutgers University. It is produced naturally by the bacterium Streptomyces fradiae. Synthesis requires specific nutrient conditions in either stationary or submerged aerobic conditions. The compound is then isolated and purified from the bacterium.
DNA binding
Aminoglycosides such as neomycin are known for their ability to bind to duplex RNA with high affinity. The association constant for neomycin with A-site RNA has been found to be in the 109 M−1 range. However, more than 50 years after its discovery, its DNA-binding properties were still unknown. Neomycin has been shown to induce thermal stabilization of triplex DNA, while having little or almost no effect on the B-DNA duplex stabilization. Neomycin was also shown to bind to structures that adopt A-form structure, triplex DNA being one of them. Neomycin also includes DNA:RNA hybrid triplex formation.