![]() | ||
Multidimensional networks, a special type of multilayer network, are networks with multiple kinds of relations. Increasingly sophisticated attempts to model real-world systems as multidimensional networks have yielded valuable insight in the fields of social network analysis, economics, urban and international transport, ecology, psychology, medicine, biology, commerce, climatology, physics, computational neuroscience, operations management, and finance.
Contents
- Terminology
- Unweighted multilayer networks
- Weighted multilayer networks
- General formulation in terms of tensors
- Multi layer neighbors
- Multi layer path length
- Network of layers
- Degree
- Versatility as multilayer centrality
- Eigenvector versatility
- Katz versatility
- HITS versatility
- PageRank versatility
- Triadic closure and clustering coefficients
- Community discovery
- Modularity maximization
- Tensor decomposition
- Statistical inference
- Structural reducibility
- Degree correlations
- Path dominance
- Shortest path discovery
- Multidimensional distance
- Dimension relevance
- Dimension connectivity
- Burst detection
- Diffusion processes on multilayer networks
- Random walks
- Classical diffusion
- Information and epidemics spreading
- Software
- References
Terminology
The rapid exploration of complex networks in recent years has been dogged by a lack of standardized naming conventions, as various groups use overlapping and contradictory terminology to describe specific network configurations (e.g., multiplex, multilayer, multilevel, multidimensional, multirelational, interconnected). Formally, multidimensional networks are edge-labeled multigraphs. The term "fully multidimensional" has also been used to refer to a multipartite edge-labeled multigraph. Multidimensional networks have also recently been reframed as specific instances of multilayer networks. In this case, there are as many layers as there are dimensions, and the links between nodes within each layer are simply all the links for a given dimension.
Unweighted multilayer networks
In elementary network theory, a network is represented by a graph
To accommodate the presence of more than one type of link, a multidimensional network is represented by a triple
Note that as in all directed graphs, the links
By convention, the number of links between two nodes in a given dimension is either 0 or 1 in a multidimensional network. However, the total number of links between two nodes across all dimensions is less than or equal to
Weighted multilayer networks
In the case of a weighted network, this triplet is expanded to a quadruplet
Further, as is often useful in social network analysis, link weights may take on positive or negative values. Such signed networks can better reflect relations like amity and enmity in social networks. Alternatively, link signs may be figured as dimensions themselves, e.g.
This conception of dimensionality can be expanded should attributes in multiple dimensions need specification. In this instance, links are n-tuples
General formulation in terms of tensors
Whereas unidimensional networks have two-dimensional adjacency matrices of size
In the case of multiplex networks, special types of multilayer networks where nodes can not be interconnected with other nodes in other layers, a three-dimensional matrix of size
Multi-layer neighbors
In a multidimensional network, the neighbors of some node
Multi-layer path length
A path between two nodes in a multidimensional network can be represented by a vector r
Network of layers
The existence of multiple layers (or dimensions) allows to introduce the new concept of network of layers, peculiar of multilayer networks. In fact, layers might be interconnected in such a way that their structure can be described by a network, as shown in the figure.
The network of layers is usually weighted (and might be directed), although, in general, the weights depends on the application of interest. A simple approach is, for each pair of layers, to sum all of the weights in the connections between their nodes to obtain edge weights that can be encoded into a matrix
where
Degree
In a non-interconnected multidimensional network, where interlayer links are absent, the degree of a node is represented by a vector of length
where the tensors
Versatility as multilayer centrality
When extended to interconnected multilayer networks, i.e. those systems where nodes are connected across layers, the concept of centrality is better understood in terms of versatility. Nodes that are not central in each layer might be the most important for the multilayer systems in certain scenarios. For instance, this is the case where two layers encode different networks with only one node in common: it is very likely that such a node will have the highest centrality score because it is responsible for the information flow across layers.
Eigenvector versatility
As for unidimensional networks, eigenvector versatility can be defined as the solution of the eigenvalue problem given by
Katz versatility
As for its unidimensional counterpart, the Katz versatility is obtained as the solution
HITS versatility
For unidimensional networks, the HITS algorithm has been originally introduced by Jon Kleinberg to rate Web Pages. The basic assumption of the algorithm is that relevant pages, named authorities, are pointed by special Web pages, named hubs. This mechanism can be mathematically described by two coupled equations which reduce to two eigenvalue problems. When the network is undirected, Authority and Hub centrality are equivalent to eigenvector centrality. These properties are preserved by the natural extension of the equations proposed by Kleinberg to the case of interconnected multilayer networks, given by
PageRank versatility
PageRank, better known as Google Search Algorithm is another measure of centrality in complex networks, originally introduced to rank Web pages. Its extension to the case of interconnected multilayer networks can be obtained as follows.
First, it is worth remarking that PageRank can be seen as the steady-state solution of a special Markov process on the top of the network. Random walkers explore the network according to a special transition matrix and their dynamics is governed by a random walk master equation. It is easy to show that the solution of this equation is equivalent to the leading eigenvector of the transition matrix.
Random walks have been defined also in the case of interconnected multilayer networks and edge-colored multigraphs (also known as multiplex networks). For interconnected multilayer networks, the transition tensor governing the dynamics of the random walkers within and across layers is given by
As its unidimensional counterpart, PageRank versatility consists of two contributions: one encoding a classical random walk with rate
If we indicate by
Triadic closure and clustering coefficients
Like many other network statistics, the meaning of a clustering coefficient becomes ambiguous in multidimensional networks, due to the fact that triples may be closed in different dimensions than they originated. Several attempts have been made to define local clustering coefficients, but these attempts have highlighted the fact that the concept must be fundamentally different in higher dimensions: some groups have based their work off of non-standard definitions, while others have experimented with different definitions of random walks and 3-cycles in multidimensional networks.
Community discovery
While cross-dimensional structures have been studied previously, they fail to detect more subtle associations found in some networks. Taking a slightly different take on the definition of "community" in the case of multidimensional networks allows for reliable identification of communities without the requirement that nodes be in direct contact with each other. For instance, two people who never communicate directly yet still browse many of the same websites would be viable candidates for this sort of algorithm.
Modularity maximization
A generalization of the well-known modularity maximization method for community discovery has been originally proposed by Mucha et al. This multiresolution method assumes a three-dimensional tensor representation of the network connectivity within layers, as for edge-colored multigraphs, and a three-dimensional tensor representation of the network connectivity across layers. It depends on the resolution parameter
Tensor decomposition
Non-negative matrix factorization has been proposed to extract the community-activity structure of temporal networks. The multilayer network is represented by a three-dimensional tensor
Statistical inference
Methods based on statistical inference, generalizing existing approaches introduced for unidimensional networks, have been proposed. Stochastic block model is the most used generative model, appropriately generalized to the case of multilayer networks.
As for unidimensional networks, principled methods like minimum description length can be used for model selection in community detection methods based on information flow.
Structural reducibility
Given the higher complexity of multilayer networks with respect to unidimensional networks, an active field of research is devoted to simplify the structure of such systems by employing some kind of dimensionality reduction.
A popular method is based on the calculation of the quantum Jensen-Shannon divergence between all pairs of layers, which is then exploited for its metric properties to build a distance matrix and hierarchically cluster the layers. Layers are successively aggregated according to the resulting hierarchical tree and the aggregation procedure is stopped when the objective function, based on the entropy of the network, gets a global maximum. This greedy approach is necessary because the underlying problem would require to verify all possible layer groups of any size, requiring a huge number of possibile combinations (which is given by the Bell number and scales super-exponentially with the number of units). Nevertheless, for multilayer systems with a small number of layers, it has been shown that the method performs optimally in the majority of cases.
Degree correlations
The question of degree correlations in unidimensional networks is fairly straightforward: do networks of similar degree tend to connect to each other? In multidimensional networks, what this question means becomes less clear. When we refer to a node's degree, are we referring to its degree in one dimension, or collapsed over all? When we seek to probe connectivity between nodes, are we comparing the same nodes across dimensions, or different nodes within dimensions, or a combination? What are the consequences of variations in each of these statistics on other network properties? In one study, assortativity was found to decrease robustness in a duplex network.
Path dominance
Given two multidimensional paths, r and s, we say that r dominates s if and only if:
Shortest path discovery
Among other network statistics, many centrality measures rely on the ability to assess shortest paths from node to node. Extending these analyses to a multidimensional network requires incorporating additional connections between nodes into the algorithms currently used (e.g., Dijkstra's). Current approaches include collapsing multi-link connections between nodes in a preprocessing step before performing variations on a breadth-first search of the network.
Multidimensional distance
One way to assess the distance between two nodes in a multidimensional network is by comparing all the multidimensional paths between them and choosing the subset that we define as shortest via path dominance: let
Dimension relevance
In a multidimensional network
Dimension connectivity
In a multidimensional network in which different dimensions of connection have different real-world values, statistics characterizing the distribution of links to the various classes are of interest. Thus it is useful to consider two metrics that assess this: dimension connectivity and edge-exclusive dimension connectivity. The former is simply the ratio of the total number of links in a given dimension to the total number of links in every dimension:
Burst detection
Burstiness is a well-known phenomenon in many real-world networks, e.g. email or other human communication networks. Additional dimensions of communication provide a more faithful representation of reality and may highlight these patterns or diminish them. Therefore it is of critical importance that our methods for detecting bursty behavior in networks accommodate multidimensional networks.
Diffusion processes on multilayer networks
Diffusion processes are widely used in physics to explore physical systems, as well as in other disciplines as social sciences, neuroscience, urban and international transportation or finance. Recently, simple and more complex diffusive processes have been generalized to multilayer networks. One result common to many studies is that diffusion in multiplex networks, a special type of multilayer system, exhibits two regimes: 1) the weight of inter-layer links, connecting layers each other, is not high enough and the multiplex system behaves like two (or more) uncoupled networks; 2) the weight of inter-layer links is high enough that layers are coupled each other, raising unexpected physical phenomena. It has been shown that there is an abrupt transition between these two regimes.
In fact, all network descriptors depending on some diffusive process, from centrality measures to community detection, are affected by the layer-layer coupling. For instance, in the case of community detection, low coupling (where information from each layer separately is more relevant than the overall structure) favors clusters within layers, whereas high coupling (where information from all layer simultaneously is more relevant than the each layer separately) favors cross-layer clusters.
Random walks
As for unidimensional networks, it is possible to define random walks on the top of multilayer systems. However, given the underlying multilayer structure, random walkers are not limited to move from one node to another within the same layer (jump), but are also allowed to move across layers (switch).
Random walks can be used to explore a multilayer system with the ultimate goal to unravel its mesoscale organization, i.e. to partition it in communities, and have been recently used to better understand navigability of multilayer networks and their resilience to random failures, as well as for exploring efficiently this type of topologies.
In the case of interconnected multilayer systems, the probability to move from a node
where
There are many different types of walks that can be encoded into the transition tensor
Classical diffusion
The problem of classical diffusion in complex networks is to understand how a quantity will flow through the system and how much time it will take to reach the stationary state. Classical diffusion in multiplex networks has been recently studied by introducing the concept of supra-adjacency matrix, later recognized as a special flattening of the multilayer adjacency tensor. In tensorial notation, the diffusion equation on the top of a general multilayer system can be written, concisely, as
where
Many of the properties of this diffusion process are completely understood in terms of the second smallest eigenvalue of the Laplacian tensor. It is interesting that diffusion in a multiplex system can be faster than diffusion in each layer separately, or in their aggregation, provided that certain spectral properties are satisfied.
Information and epidemics spreading
Recently, how information (or diseases) spread through a multilayer system has been the subject of intense research.