Rahul Sharma (Editor)

Measure preserving dynamical system

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Measure-preserving dynamical system

In mathematics, a measure-preserving dynamical system is an object of study in the abstract formulation of dynamical systems, and ergodic theory in particular.

Contents

Definition

A measure-preserving dynamical system is defined as a probability space and a measure-preserving transformation on it. In more detail, it is a system

( X , B , μ , T )

with the following structure:

  • X is a set,
  • B is a σ-algebra over X ,
  • μ : B [ 0 , 1 ] is a probability measure, so that μ(X) = 1, and μ(∅) = 0,
  • T : X X is a measurable transformation which preserves the measure μ , i.e., A B μ ( T 1 ( A ) ) = μ ( A ) .
  • This definition can be generalized to the case in which T is not a single transformation that is iterated to give the dynamics of the system, but instead is a monoid (or even a group) of transformations Ts : XX parametrized by sZ (or R, or N ∪ {0}, or [0, +∞)), where each transformation Ts satisfies the same requirements as T above. In particular, the transformations obey the rules:

  • T 0 = i d X : X X , the identity function on X;
  • T s T t = T t + s , whenever all the terms are well-defined;
  • T s 1 = T s , whenever all the terms are well-defined.
  • The earlier, simpler case fits into this framework by definingTs = Ts for sN.

    The existence of invariant measures for certain maps and Markov processes is established by the Krylov–Bogolyubov theorem.

    Examples

    Examples include:

  • μ could be the normalized angle measure dθ/2π on the unit circle, and T a rotation. See equidistribution theorem;
  • the Bernoulli scheme;
  • the interval exchange transformation;
  • with the definition of an appropriate measure, a subshift of finite type;
  • the base flow of a random dynamical system.
  • Homomorphisms

    The concept of a homomorphism and an isomorphism may be defined.

    Consider two dynamical systems ( X , A , μ , T ) and ( Y , B , ν , S ) . Then a mapping

    φ : X Y

    is a homomorphism of dynamical systems if it satisfies the following three properties:

    1. The map φ is measurable,
    2. For each B B , one has μ ( φ 1 B ) = ν ( B ) ,
    3. For μ-almost all xX, one has φ(Tx) = Sx).

    The system ( Y , B , ν , S ) is then called a factor of ( X , A , μ , T ) .

    The map φ is an isomorphism of dynamical systems if, in addition, there exists another mapping

    ψ : Y X

    that is also a homomorphism, which satisfies

    1. For μ-almost all xX, one has x = ψ ( φ x )
    2. For ν-almost all yY, one has y = φ ( ψ y ) .

    Hence, one may form a category of dynamical systems and their homomorphisms.

    Generic points

    A point xX is called a generic point if the orbit of the point is distributed uniformly according to the measure.

    Symbolic names and generators

    Consider a dynamical system ( X , B , T , μ ) , and let Q = {Q1, ..., Qk} be a partition of X into k measurable pair-wise disjoint pieces. Given a point xX, clearly x belongs to only one of the Qi. Similarly, the iterated point Tnx can belong to only one of the parts as well. The symbolic name of x, with regards to the partition Q, is the sequence of integers {an} such that

    T n x Q a n .

    The set of symbolic names with respect to a partition is called the symbolic dynamics of the dynamical system. A partition Q is called a generator or generating partition if μ-almost every point x has a unique symbolic name.

    Operations on partitions

    Given a partition Q = {Q1, ..., Qk} and a dynamical system ( X , B , T , μ ) , we define T-pullback of Q as

    T 1 Q = { T 1 Q 1 , , T 1 Q k } .

    Further, given two partitions Q = {Q1, ..., Qk} and R = {R1, ..., Rm}, we define their refinement as

    Q R = { Q i R j i = 1 , , k ,   j = 1 , , m ,   μ ( Q i R j ) > 0 } .

    With these two constructs we may define refinement of an iterated pullback

    n = 0 N T n Q = { Q i 0 T 1 Q i 1 T N Q i N  where  i = 1 , , k ,   = 0 , , N ,   μ ( Q i 0 T 1 Q i 1 T N Q i N ) > 0 }

    which plays crucial role in the construction of the measure-theoretic entropy of a dynamical system.

    Measure-theoretic entropy

    The entropy of a partition Q is defined as

    H ( Q ) = m = 1 k μ ( Q m ) log μ ( Q m ) .

    The measure-theoretic entropy of a dynamical system ( X , B , T , μ ) with respect to a partition Q = {Q1, ..., Qk} is then defined as

    h μ ( T , Q ) = lim N 1 N H ( n = 0 N T n Q ) .

    Finally, the Kolmogorov–Sinai or metric or measure-theoretic entropy of a dynamical system ( X , B , T , μ ) is defined as

    h μ ( T ) = sup Q h μ ( T , Q ) .

    where the supremum is taken over all finite measurable partitions. A theorem of Yakov Sinai in 1959 shows that the supremum is actually obtained on partitions that are generators. Thus, for example, the entropy of the Bernoulli process is log 2, since almost every real number has a unique binary expansion. That is, one may partition the unit interval into the intervals [0, 1/2) and [1/2, 1]. Every real number x is either less than 1/2 or not; and likewise so is the fractional part of 2nx.

    If the space X is compact and endowed with a topology, or is a metric space, then the topological entropy may also be defined.

    Examples

  • T. Schürmann and I. Hoffmann, The entropy of strange billiards inside n-simplexes. J. Phys. A28, page 5033ff, 1995. PDF-Dokument
  • References

    Measure-preserving dynamical system Wikipedia