Kalpana Kalpana (Editor)

Lie coalgebra

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In mathematics a Lie coalgebra is the dual structure to a Lie algebra.

Contents

In finite dimensions, these are dual objects: the dual vector space to a Lie algebra naturally has the structure of a Lie coalgebra, and conversely.

Definition

Let E be a vector space over a field k equipped with a linear mapping d : E E E from E to the exterior product of E with itself. It is possible to extend d uniquely to a graded derivation (this means that, for any a, bE which are homogeneous elements, d ( a b ) = ( d a ) b + ( 1 ) deg a a ( d b ) ) of degree 1 on the exterior algebra of E:

d : E + 1 E .

Then the pair (E, d) is said to be a Lie coalgebra if d2 = 0, i.e., if the graded components of the exterior algebra with derivation ( E , d ) form a cochain complex:

E   d   E E   d   3 E d  

Relation to de Rham complex

Just as the exterior algebra (and tensor algebra) of vector fields on a manifold form a Lie algebra (over the base field K), the de Rham complex of differential forms on a manifold form a Lie coalgebra (over the base field K). Further, there is a pairing between vector fields and differential forms.

However, the situation is subtler: the Lie bracket is not linear over the algebra of smooth functions C ( M ) (the error is the Lie derivative), nor is the exterior derivative: d ( f g ) = ( d f ) g + f ( d g ) f ( d g ) (it is a derivation, not linear over functions): they are not tensors. They are not linear over functions, but they behave in a consistent way, which is not captured simply by the notion of Lie algebra and Lie coalgebra.

Further, in the de Rham complex, the derivation is not only defined for Ω 1 Ω 2 , but is also defined for C ( M ) Ω 1 ( M ) .

The Lie algebra on the dual

A Lie algebra structure on a vector space is a map [ , ] : g × g g which is skew-symmetric, and satisfies the Jacobi identity. Equivalently, a map [ , ] : g g g that satisfies the Jacobi identity.

Dually, a Lie coalgebra structure on a vector space E is a linear map d : E E E which is antisymmetric (this means that it satisfies τ d = d , where τ is the canonical flip E E E E ) and satisfies the so-called cocycle condition (also known as the co-Leibniz rule)

( d i d ) d = ( i d d ) d + ( i d τ ) ( d i d ) d .

Due to the antisymmetry condition, the map d : E E E can be also written as a map d : E E E .

The dual of the Lie bracket of a Lie algebra g yields a map (the cocommutator)

[ , ] : g ( g g ) g g

where the isomorphism holds in finite dimension; dually for the dual of Lie comultiplication. In this context, the Jacobi identity corresponds to the cocycle condition.

More explicitly, let E be a Lie coalgebra over a field of characteristic neither 2 nor 3. The dual space E* carries the structure of a bracket defined by

α([x, y]) = dα(xy), for all α ∈ E and x,yE*.

We show that this endows E* with a Lie bracket. It suffices to check the Jacobi identity. For any x, y, zE* and α ∈ E,

d 2 α ( x y z ) = 1 3 d 2 α ( x y z + y z x + z x y ) = 1 3 ( d α ( [ x , y ] z ) + d α ( [ y , z ] x ) + d α ( [ z , x ] y ) ) ,

where the latter step follows from the standard identification of the dual of a wedge product with the wedge product of the duals. Finally, this gives

d 2 α ( x y z ) = 1 3 ( α ( [ [ x , y ] , z ] ) + α ( [ [ y , z ] , x ] ) + α ( [ [ z , x ] , y ] ) ) .

Since d2 = 0, it follows that

α ( [ [ x , y ] , z ] + [ [ y , z ] , x ] + [ [ z , x ] , y ] ) = 0 , for any α, x, y, and z.

Thus, by the double-duality isomorphism (more precisely, by the double-duality monomorphism, since the vector space needs not be finite-dimensional), the Jacobi identity is satisfied.

In particular, note that this proof demonstrates that the cocycle condition d2 = 0 is in a sense dual to the Jacobi identity.

References

Lie coalgebra Wikipedia