| Support −        ∞                   to                 +        ∞              {displaystyle -infty {	ext{ to }}+infty } PDF δ                          λ                                                2                  π                                                                                          1                          1              +                                                (                                                                                    x                        −                        ξ                                            λ                                                        )                                                  2                                                                              e                      −                                          1                2                                                                    (                γ                +                δ                                  sinh                                      −                    1                                                                                    (                                                                                    x                        −                        ξ                                            λ                                                        )                                )                                            2                                                          {displaystyle {rac {delta }{lambda {sqrt {2pi }}}}{rac {1}{sqrt {1+left({rac {x-xi }{lambda }}ight)^{2}}}}e^{-{rac {1}{2}}left(gamma +delta sinh ^{-1}left({rac {x-xi }{lambda }}ight)ight)^{2}}} CDF Φ                  (          γ          +          δ                      sinh                          −              1                                                      (                                                            x                  −                  ξ                                λ                                      )                    )                      {displaystyle Phi left(gamma +delta sinh ^{-1}left({rac {x-xi }{lambda }}ight)ight)} Mean ξ        −        λ        exp                                                    δ                              −                2                                      2                          sinh                          (                                    γ              δ                                )                      {displaystyle xi -lambda exp {rac {delta ^{-2}}{2}}sinh left({rac {gamma }{delta }}ight)} Variance λ                              2                                      2                          (        exp                (                  δ                      −            2                          )        −        1        )                  (          exp                    (                      δ                          −              2                                )          cosh                                (                                                            2                  γ                                δ                                      )                    +          1          )                      {displaystyle {rac {lambda ^{2}}{2}}(exp(delta ^{-2})-1)left(exp(delta ^{-2})cosh left({rac {2gamma }{delta }}ight)+1ight)} | ||
The Johnson's SU-distribution is a four-parameter family of probability distributions first investigated by N. L. Johnson in 1949. Johnson proposed it as a transformation of the normal distribution:
Contents
where                     
Generation of random variables
Let U be a random variable that is uniformly distributed on the unit interval [0, 1]. Johnson's SU random variables can be generated from U as follows:
where Φ is the cumulative distribution function of the normal distribution.
Additional reading
References
Johnson's SU-distribution Wikipedia(Text) CC BY-SA
