In mathematics, an integration by parts operator is a linear operator used to formulate integration by parts formulae; the most interesting examples of integration by parts operators occur in infinite-dimensional settings and find uses in stochastic analysis and its applications.
Let E be a Banach space such that both E and its continuous dual space E∗ are separable spaces; let μ be a Borel measure on E. Let S be any (fixed) subset of the class of functions defined on E. A linear operator A : S → L2(E, μ; R) is said to be an integration by parts operator for μ if
∫ E D φ ( x ) h ( x ) d μ ( x ) = ∫ E φ ( x ) ( A h ) ( x ) d μ ( x ) for every C1 function φ : E → R and all h ∈ S for which either side of the above equality makes sense. In the above, Dφ(x) denotes the Fréchet derivative of φ at x.
Consider an abstract Wiener space i : H → E with abstract Wiener measure γ. Take S to be the set of all C1 functions from E into E∗; E∗ can be thought of as a subspace of E in view of the inclusionsFor
h ∈
S, define
Ah byThis operator
A is an integration by parts operator, also known as the
divergence operator; a proof can be found in Elworthy (1974).
The classical Wiener space C0 of continuous paths in Rn starting at zero and defined on the unit interval [0, 1] has another integration by parts operator. Let S be the collectioni.e., all
bounded,
adapted processes with absolutely continuous sample paths. Let
φ :
C0 →
R be any
C1 function such that both
φ and D
φ are bounded. For
h ∈
S and
λ ∈
R, the
Girsanov theorem implies thatDifferentiating with respect to
λ and setting
λ = 0 giveswhere (
Ah)(
x) is the Itō integralThe same relation holds for more general
φ by an approximation argument; thus, the Itō integral is an integration by parts operator and can be seen as an infinite-dimensional divergence operator. This is the same result as the integration by parts formula derived from the Clark-Ocone theorem.