![]() | ||
In mathematics and computing, hexadecimal (also base 16, or hex) is a positional numeral system with a radix, or base, of 16. It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine, and A, B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.
Contents
- Using 09 and AF
- Early written representations
- Verbal and digital representations
- Signs
- Hexadecimal exponential notation
- Binary conversion
- Division remainder in source base
- Addition and multiplication
- Tools for conversion
- Rational numbers
- Irrational numbers
- Powers
- Etymology
- Use in Chinese culture
- Primary numeral system
- Key to number base notation
- Transfer encoding
- References
Hexadecimal numerals are widely used by computer system designers and programmers. As each hexadecimal digit represents four binary digits (bits), it allows a more human-friendly representation of binary-coded values. One hexadecimal digit represents a nibble (4 bits), which is half of an octet or byte (8 bits). For example, a single byte can have values ranging from 00000000 to 11111111 in binary form, but this may be more conveniently represented as 00 to FF in hexadecimal.
In a non-programming context, a subscript is typically used to give the radix, for example the decimal value 7004109950000000000♠10,995 would be expressed in hexadecimal as 2AF316. Several notations are used to support hexadecimal representation of constants in programming languages, usually involving a prefix or suffix. The prefix "0x" is used in C and related languages, where this value might be denoted as 0x2AF3.
Using 0–9 and A–F
In contexts where the base is not clear, hexadecimal numbers can be ambiguous and confused with numbers expressed in other bases. There are several conventions for expressing values unambiguously. A numerical subscript (itself written in decimal) can give the base explicitly: 15910 is decimal 159; 15916 is hexadecimal 159, which is equal to 34510. Some authors prefer a text subscript, such as 159decimal and 159hex, or 159d and 159h.
In linear text systems, such as those used in most computer programming environments, a variety of methods have arisen:
%
: http://www.example.com/name%20with%20spaces
where %20
is the space (blank) character, ASCII code point 20 in hex, 32 in decimal.ode;
, where the x denotes that code is a hex code point (of 1- to 6-digits) assigned to the character in the Unicode standard. Thus ’
represents the right single quotation mark (’), Unicode code point number 2019 in hex, 8217 (thus ’
in decimal).U+
followed by the hex value, e.g. U+20AC
is the Euro sign (€).#
: white, for example, is represented #FFFFFF
. CSS allows 3-hexdigit abbreviations with one hexdigit per component: #FA3 abbreviates #FFAA33 (a golden orange: ).0x
for numeric constants represented in hex: 0x5A3
. Character and string constants may express character codes in hexadecimal with the prefix x
followed by two hex digits: 'x1B'
represents the Esc control character; "x1B[0mx1B[25;1H"
is a string containing 11 characters (plus a trailing NUL to mark the end of the string) with two embedded Esc characters. To output an integer as hexadecimal with the printf function family, the format conversion code %X
or %x
is used.=
, as in Espa=F1a
to send "España" (Spain). (Hexadecimal F1, equal to decimal 241, is the code number for the lower case n with tilde in the ISO/IEC 8859-1 character set.)FFh
or 05A3H
. Some implementations require a leading zero when the first hexadecimal digit character is not a decimal digit, so one would write 0FFh
instead of FFh
$
as a prefix: $5A3
.H'ABCD'
(for ABCD16).16#5A3#
. For bit vector constants VHDL uses the notation x"5A3"
.8'hFF
, where 8 is the number of bits in the value and FF is the hexadecimal constant.16r
: 16r5A3
16#
: 16#5A3
. For PostScript, binary data (such as image pixels) can be expressed as unprefixed consecutive hexadecimal pairs: AA213FD51B3801043FBC
...#x
and #16r
. Setting the variables *read-base* and *print-base* to 16 can also used to switch the reader and printer of a Common Lisp system to Hexadecimal number representation for reading and printing numbers. Thus Hexadecimal numbers can be represented without the #x or #16r prefix code, when the input or output base has been changed to 16.&H
: &H5A3
&
for hex.0h
prefix: 0h5A3
16r
to denote hexadecimal numbers: 16r5a3
. Binary, quaternary (base-4) and octal numbers can be specified similarly.X'5A3'
, and is used in Assembler, PL/I, COBOL, JCL, scripts, commands and other places. This format was common on other (and now obsolete) IBM systems as well. Occasionally quotation marks were used instead of apostrophes.:
). This, for example, is a valid IPv6 address: 2001:0db8:85a3:0000:0000:8a2e:0370:7334; this can be abbreviated as 2001:db8:85a3::8a2e:370:7334. By contrast, IPv4 addresses are usually written in decimal.{3F2504E0-4F89-41D3-9A0C-0305E82C3301}
.There is no universal convention to use lowercase or uppercase for the letter digits, and each is prevalent or preferred in particular environments by community standards or convention.
Early written representations
The use of the letters A through F to represent the digits above 9 was not universal in the early history of computers.
Verbal and digital representations
There are no traditional numerals to represent the quantities from ten to fifteen — letters are used as a substitute — and most European languages lack non-decimal names for the numerals above ten. Even though English has names for several non-decimal powers (pair for the first binary power, score for the first vigesimal power, dozen, gross and great gross for the first three duodecimal powers), no English name describes the hexadecimal powers (decimal 16, 256, 4096, 65536, ... ). Some people read hexadecimal numbers digit by digit like a phone number, or using the NATO phonetic alphabet, the Joint Army/Navy Phonetic Alphabet, or a similar ad hoc system.
Systems of counting on digits have been devised for both binary and hexadecimal. Arthur C. Clarke suggested using each finger as an on/off bit, allowing finger counting from zero to 102310 on ten fingers. Another system for counting up to FF16 (25510) is illustrated on the right.
Signs
The hexadecimal system can express negative numbers the same way as in decimal: −2A to represent −4210 and so on.
Hexadecimal can also be used to express the exact bit patterns used in the processor, so a sequence of hexadecimal digits may represent a signed or even a floating point value. This way, the negative number −4210 can be written as FFFF FFD6 in a 32-bit CPU register (in two's-complement), as C228 0000 in a 32-bit FPU register or C045 0000 0000 0000 in a 64-bit FPU register (in the IEEE floating-point standard).
Hexadecimal exponential notation
Just as decimal numbers can be represented in exponential notation, so too can hexadecimal. By convention, the letter P (or p, for "power") represents times two raised to the power of, whereas E (or e) serves a similar purpose in decimal as part of the E notation. The number after the P is decimal and represents the binary exponent.
Usually the number is normalised so that the leading hexadecimal digit is 1 (unless the value is exactly 0).
Example: 1.3DEp42 represents 1.3DE16 × 242.
This notation can be used for floating-point literals in the C99 edition of the C programming language. Using the %a or %A conversion specifiers, this notation can be produced by implementations of the printf family of functions following the C99 specification and Single Unix Specification (IEEE Std 1003.1) POSIX standard. Hexadecimal exponential notation is required by the IEEE 754-2008 binary floating-point standard.
Binary conversion
Most computers manipulate binary data, but it is difficult for humans to work with the large number of digits for even a relatively small binary number. Although most humans are familiar with the base 10 system, it is much easier to map binary to hexadecimal than to decimal because each hexadecimal digit maps to a whole number of bits (410). This example converts 11112 to base ten. Since each position in a binary numeral can contain either a 1 or a 0, its value may be easily determined by its position from the right:
Therefore:
With little practice, mapping 11112 to F16 in one step becomes easy: see table in Written representation. The advantage of using hexadecimal rather than decimal increases rapidly with the size of the number. When the number becomes large, conversion to decimal is very tedious. However, when mapping to hexadecimal, it is trivial to regard the binary string as 4-digit groups and map each to a single hexadecimal digit.
This example shows the conversion of a binary number to decimal, mapping each digit to the decimal value, and adding the results.
Compare this to the conversion to hexadecimal, where each group of four digits can be considered independently, and converted directly:
The conversion from hexadecimal to binary is equally direct.
The octal system can also be useful as a tool for people who need to deal directly with binary computer data. Octal represents data as three bits per character, rather than four.
Division-remainder in source base
As with all bases there is a simple algorithm for converting a representation of a number to hexadecimal by doing integer division and remainder operations in the source base. In theory, this is possible from any base, but for most humans only decimal and for most computers only binary (which can be converted by far more efficient methods) can be easily handled with this method.
Let d be the number to represent in hexadecimal, and the series hihi−1...h2h1 be the hexadecimal digits representing the number.
- i ← 1
- hi ← d mod 16
- d ← (d − hi) / 16
- If d = 0 (return series hi) else increment i and go to step 2
"16" may be replaced with any other base that may be desired.
The following is a JavaScript implementation of the above algorithm for converting any number to a hexadecimal in String representation. Its purpose is to illustrate the above algorithm. To work with data seriously, however, it is much more advisable to work with bitwise operators.
Addition and multiplication
It is also possible to make the conversion by assigning each place in the source base the hexadecimal representation of its place value and then performing multiplication and addition to get the final representation. That is, to convert the number B3AD to decimal one can split the hexadecimal number into its digits: B (1110), 3 (310), A (1010) and D (1310), and then get the final result by multiplying each decimal representation by 16p, where p is the corresponding hex digit position, counting from right to left, beginning with 0. In this case we have B3AD = (11 × 163) + (3 × 162) + (10 × 161) + (13 × 160), which is 45997 base 10.
Tools for conversion
Most modern computer systems with graphical user interfaces provide a built-in calculator utility, capable of performing conversions between various radices, in general including hexadecimal.
In Microsoft Windows, the Calculator utility can be set to Scientific mode (called Programmer mode in some versions), which allows conversions between radix 16 (hexadecimal), 10 (decimal), 8 (octal) and 2 (binary), the bases most commonly used by programmers. In Scientific Mode, the on-screen numeric keypad includes the hexadecimal digits A through F, which are active when "Hex" is selected. In hex mode, however, the Windows Calculator supports only integers.
Rational numbers
As with other numeral systems, the hexadecimal system can be used to represent rational numbers, although repeating expansions are common since sixteen (10hex) has only a single prime factor (two):
where an overline denotes a recurring pattern.
For any base, 0.1 (or "1/10") is always equivalent to one divided by the representation of that base value in its own number system. Thus, whether dividing one by two for binary or dividing one by sixteen for hexadecimal, both of these fractions are written as 0.1
. Because the radix 16 is a perfect square (42), fractions expressed in hexadecimal have an odd period much more often than decimal ones, and there are no cyclic numbers (other than trivial single digits). Recurring digits are exhibited when the denominator in lowest terms has a prime factor not found in the radix; thus, when using hexadecimal notation, all fractions with denominators that are not a power of two result in an infinite string of recurring digits (such as thirds and fifths). This makes hexadecimal (and binary) less convenient than decimal for representing rational numbers since a larger proportion lie outside its range of finite representation.
All rational numbers finitely representable in hexadecimal are also finitely representable in decimal, duodecimal and sexagesimal: that is, any hexadecimal number with a finite number of digits has a finite number of digits when expressed in those other bases. Conversely, only a fraction of those finitely representable in the latter bases are finitely representable in hexadecimal. For example, decimal 0.1 corresponds to the infinite recurring representation 0.199999999999... in hexadecimal. However, hexadecimal is more efficient than bases 12 and 60 for representing fractions with powers of two in the denominator (e.g., decimal one sixteenth is 0.1 in hexadecimal, 0.09 in duodecimal, 0;3,45 in sexagesimal and 0.0625 in decimal).
Irrational numbers
The table below gives the expansions of some common irrational numbers in decimal and hexadecimal.
Powers
Powers of two have very simple expansions in hexadecimal. The first sixteen powers of two are shown below.
Etymology
The word hexadecimal is composed of hexa-, derived from the Greek έξ (hex) for six, and -decimal, derived from the Latin for tenth. Webster's Third New International online derives hexadecimal as an alteration of the all-Latin sexadecimal (which appears in the earlier Bendix documentation). The earliest date attested for hexadecimal in Merriam-Webster Collegiate online is 1954, placing it safely in the category of international scientific vocabulary (ISV). It is common in ISV to mix Greek and Latin combining forms freely. The word sexagesimal (for base 60) retains the Latin prefix. Donald Knuth has pointed out that the etymologically correct term is senidenary (or possibly, sedenary), from the Latin term for grouped by 16. (The terms binary, ternary and quaternary are from the same Latin construction, and the etymologically correct terms for decimal and octal arithmetic are denary and octonary, respectively.) Alfred B. Taylor used senidenary in his mid-1800s work on alternative number bases, although he rejected base 16 because of its "incommodious number of digits". Schwartzman notes that the expected form from usual Latin phrasing would be sexadecimal, but computer hackers would be tempted to shorten that word to sex. The etymologically proper Greek term would be hexadecadic / εξαδεκαδικός / exadekadikos (although in Modern Greek, decahexadic / δεκαεξαδικός / dekaexadikos is more commonly used).
Use in Chinese culture
The traditional Chinese units of weight were base-16. For example, one jīn (斤) in the old system equals sixteen taels. The suanpan (Chinese abacus) could be used to perform hexadecimal calculations.
Primary numeral system
As with the duodecimal system, there have been occasional attempts to promote hexadecimal as the preferred numeral system. These attempts often propose specific pronunciation and symbols for the individual numerals. Some proposals unify standard measures so that they are multiples of 16.
An example of unified standard measures is hexadecimal time, which subdivides a day by 16 so that there are 16 "hexhours" in a day.
Key to number base notation
Simple key for notations used in article:
Transfer encoding
Base16 or hex (not to be confused with Intel HEX and the like) is one of the simplest binary-to-text encodings, which stores each byte as a pair of hexadecimal digits. Many variations of such format are possible, for example either uppercase (A-F) or lowercase (a-f) letters may be used for digits greater than 9; spaces, line breaks or other separators may be added between digit groups of different lengths; header and/or footer with metainformation may be added.