Rahul Sharma (Editor)

Hessian polyhedron

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Hessian polyhedron

In geometry, the Hessian polyhedron is a regular complex polyhedron 3{3}3{3}3, , in C 3 . It has 27 vertices, 72 3{} edges, and 27 3{3}3 faces. It is self-dual.

Contents

Coxeter named it after Ludwig Otto Hesse for sharing the Hessian configuration [ 9 4 3 12 ] or (94123), 9 points lying by threes on twelve lines, with four lines through each point.

Its complex reflection group is 3[3]3[3]3 or , order 648. It has 27 copies of , order 24, at each vertex. It has 24 order-3 reflections. Its coxeter number is 12, with degrees of the fundamental invariants 3,6, and 12, which can be seen in projective symmetry of the polytopes.

The Witting polytope, 3{3}3{3}3{3}3, contains the Hessian polyhedron as cells and vertex figures.

It has a real representation as the 221 polytope, , in 4-dimensional space, sharing the same 27 vertices. The 216 edges in 221 can be seen as the 72 3{} edges represented as 3 simple edges.

Coordinates

Its 27 vertices be given coordinates in C 3 : for (λ, μ = 0,1,2).

(0,ωλ,−ωμ) (−ωμ,0,ωλ) (ωλ,−ωμ,0)

where ω = 1 + i 3 2 .

Images

These are 8 symmetric orthographic projections, some with overlapping vertices, shown by colors. Here the 72 triangular edges are drawn as 3-separate edges.

The Hessian polyhedron can be seen as an alternation of , = . This double Hessian polyhedron has 54 vertices, 216 simple edges, and 72 faces. Its vertices represent the union of the vertices and its dual .

Its complex reflection group is 3[3]3[4]2, or , order 1296. It has 54 copies of , order 24, at each vertex. It has 24 order-3 reflections and 9 order-2 reflections. Its coxeter number is 18, with degrees of the fundamental invariants 6, 12, and 18 which can be seen in projective symmetry of the polytopes.

Coxeter noted that the three complex polytopes , , resemble the real cube, tetrahedron, and octahedron: , , . The Hessian is analogous to the tetrahedron, like the cube is a double tetrahedron, and the octahedron as a rectified tetrahedron. In both sets the vertices of the first belong to two dual pairs of the second, and the vertices of the third are at the center of the edges of the second.

Its real representation 54 vertices are contained by two 221 polytopes in symmetric configurations: and . Its vertices can also be seen in the dual polytope of 122.

Rectified Hessian polyhedron

The rectification, doubles in symmetry as a regular complex polyhedron with 72 vertices, 216 3{} edges, 54 3{3}3 faces. Its vertex figure is 3{4}2, and van oss polygon 3{4}3. It is dual to the double Hessian polyhedron.

It has a real representation as the 122 polytope, , sharing the 72 vertices. Its 216 3-edges can be drawn as 648 simple edges, which is 72 less than 122's 720 edges.

References

Hessian polyhedron Wikipedia


Similar Topics