Parameters m ≥ 0, a ≥ 0 | Support x > 0 | |
![]() | ||
Notation H a r m ( m , a ) {displaystyle mathrm {Harm} (m,a),} PDF 1 2 x K 0 ( a ) exp ( − a 2 ( x m + m x ) ) {displaystyle {rac {1}{2xK_{0}(a)}}exp left(-{rac {a}{2}}left({rac {x}{m}}+{rac {m}{x}}ight)ight)} CDF ∫ 0 X 1 2 x K 0 ( a ) exp ( − a 2 ( x m + m x ) ) d x {displaystyle int _{0}^{X}{rac {1}{2xK_{0}(a)}}exp left(-{rac {a}{2}}left({rac {x}{m}}+{rac {m}{x}}ight)ight),dx} Mean m K 1 ( a ) K 0 ( a ) {displaystyle m{rac {K_{1}(a)}{K_{0}(a)}}} |
In probability theory and statistics, the harmonic distribution is a continuous probability distribution. It was discovered by Étienne Halphen, who had become interested in the statistical modeling of natural events. His practical experience in data analysis motivated him to pioneer a new system of distributions that provided sufficient flexibility to fit a large variety of data sets. Halphen restricted his search to distributions whose parameters could be estimated using simple statistical approaches. Then, Halphen introduced for the first time what he called the Harmonic distribution pr Harmonic Law.. The harmonic law is a special case of the generalized inverse Gaussian distribution family when
Contents
History
One of Halphen’s tasks,while working as statistician for Electricité de France, was the modeling of the monthly flow of water in hydroelectric stations. Halphen realized that the Pearson system of probability distributions could not be solved, it was inadequate for his purpose despite its remarkable properties. Therefore, Halphen's objective was to obtain a probability distribution with two parameters, subject a exponential decay both for large and small flows.
In 1941, Halphen decided that, in suitably scaled units, the density of X should be the same as 1/X. Taken this consideration, Halphen found the Harmonic density function. Nowadays known as an hyperbolic distribution, has been studied by Rukhin (1974) and Barndorff-Nielsen (1978).
The Harmonic Law is the only one two-parameter family of distributions that is closed under change of scale and under reciprocals, such that the maximum likelihood estimator of the population mean is the sample mean (Gauss' principle).
In 1946, Halphen realized that introducing an additional parameter, flexibility could be improved. His efforts led him to generalize the Harmonic Law to obtain the Generalized Inverse Gaussian Distribution density.
Notation
The Harmonic distribution will be denoted by
Probability density function
The density function of the harmonic law, which depends of two parameters, has the form,
where:
Cumulative distribution function
The cumulative distribution function for the Harmonic Law does not have a closed form, and consequently it is not possible to derive an explicit expression. The cumulative distribution function must be calculated solving numerically an integral,
Quantiles
The quantiles of the harmonic law are calculated with the cumulative distribution. In general does not exist a closed form except for the second quantile. We can only get the quantiles numerically.
The first quantile, can be obtained solving the following equation expressed in terms of the integral of the probability density function:,
In this distribution, m is the median, that is, q2 = m. Therefore,
Finally, the third quantile, comes from the solution of the equation,
Moments
To derive an expression for the non-central moment of order r, the integral representation of the Bessel function can be used.
where:
Hence the mean and the succeeding three moments about it are
Skewness
Skewness is the third standardized moment around the mean divided by the 3/2 power of the standard deviation, we work with,
Kurtosis
The coefficient of kurtosis is the fourth standardized moment divided by the square of the variance., for the harmonic distribution it is
Maximum likelihood estimation
The likelihood function is
After that, the log-likelihood function is
From the log-likelihood function, the likelihood equations are,
To calculate the estimator
Method of moments
The mean and the variance for the harmonic distribution are,
Note that,
The method of moments consists in to solve the following equations:
where
Related distributions
The harmonic law is a sub-family of the generalized inverse Gaussian distribution. The density of GIG family have the form
The density of the Generalized Inverse Gaussian Distribution family corresponds to the Harmonic Law when
When
This explains why the normal distribution can be used successfully for certain data sets of ratios.
Another related distribution is the log-harmonic law, which is the probability distribution of a random variable whose logarithm follows an harmonic law.
This family has an interesting property, the Pitman estimator of the location parameter does not depend on the choice of the loss function. Only two statistical models satisfy this property: One is the normal family of distributions and the other one is a three-parameter statistical model which contains the log-harmonic law.