Suvarna Garge (Editor)

Hall–Higman theorem

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In mathematical group theory, the Hall–Higman theorem, due to Philip Hall and Graham Higman (1956, Theorem B), describes the possibilities for the minimal polynomial of an element of prime power order for a representation of a p-solvable group.

Contents

Statement

Suppose that G is a p-solvable group with no normal p-subgroups, acting faithfully on a vector space over a field of characteristic p. If x is an element of order pn of G then the minimal polynomial is of the form (X − 1)r for some r ≤ pn. The Hall–Higman theorem states that one of the following 3 possibilities holds:

  • r = pn
  • p is a Fermat prime and the Sylow 2-subgroups of G are non-abelian and r ≥ pnpn−1
  • p = 2 and the Sylow q-subgroups of G are non-abelian for some Mersenne prime q = 2m − 1 less than 2n and r ≥ 2n − 2nm.
  • Examples

    The group SL2(F3) is 3-solvable (in fact solvable) and has an obvious 2-dimensional representation over a field of characteristic p=3, in which the elements of order 3 have minimal polynomial (X−1)2 with r=3−1.

    References

    Hall–Higman theorem Wikipedia