![]() | ||
A Google matrix is a particular stochastic matrix that is used by Google's PageRank algorithm. The matrix represents a graph with edges representing links between pages. The rank of each page can be generated iteratively from the Google matrix using the power method. However, in order for the power method to converge, the matrix must be stochastic, irreducible and aperiodic.
Contents
Adjacency matrix A and Markov matrix S
In order to generate the Google matrix G, we must first generate an adjacency matrix A which represents the relations between pages or nodes.
Assuming there are N pages, we can fill out A by doing the following:
- A matrix element
A i , j j has a link to nodei , and 0 otherwise; this is the adjacency matrix of links. - A related matrix S corresponding to the transitions in a Markov chain of given network is constructed from A by dividing the elements of column "j" by a number of
k j k j a to every other node. - Now by the construction the sum of all elements in any column of matrix S is equal to unity. In this way the matrix S is mathematically well defined and it belongs to the class of Markov chains and the class of Perron-Frobenius operators. That makes S suitable for the PageRank algorithm.
Construction of Google matrix G
Then the final Google matrix G can be expressed via S as:
By the construction the sum of all non-negative elements inside each matrix column is equal to unity. The numerical coefficient
Usually S is a sparse matrix and for modern directed networks it has only about ten nonzero elements in a line or column, thus only about 10N multiplications are needed to multiply a vector by matrix G.
Examples of Google matrix
An example of the matrix
For the actual matrix, Google uses a damping factor
Spectrum and eigenstates of G matrix
For
At
The Google matrix can be also constructed for the Ulam networks generated by the Ulam method [8] for dynamical maps. The spectral properties of such matrices are discussed in [9,10,11,12,13,15]. In a number of cases the spectrum is described by the fractal Weyl law [10,12].
The Google matrix can be constructed also for other directed networks, e.g. for the procedure call network of the Linux Kernel software introduced in [15]. In this case the spectrum of
Other examples of