()1.
k(
x,
y,...) is a
field extension of
k generated by
x,
y,...2. (
x,
y,...) is the
ideal generated by
x,
y,...3. (
I:
J) is the
ideal quotient of
I by
J, consisting of all elements
x such that
xJ⊆
I[]R[
x,
y,...] is a
polynomial ring over
R.
[[]]R[[
x,
y,...]] is a formal power series ring over
R.
{}R{
x,
y,...} is a ring of formal power series over
R satisfying some convergence condition.
^Â is the completion of
AabsolutelyThe word "absolutely" usually means "not relatively"; i.e., independent of the base field in some sense. It is often synonymous with "geometrically".1. An absolutely flat ring is a ring such that all modules over it are flat. (Non-commutative rings with this property are called
von Neumann regular rings.)2. An ideal in a polynomial ring over a field is called
absolutely prime if its extension remains prime for every extension of the field.3. An ideal in a polynomial ring over a field is called
absolutely unramified if it is unramified for every extension of the field.4.
Absolutely normal is an alternative term for geometrically normal.5.
Absolutely regular is an alternative term for
geometrically regular.6. An
absolutely simple point is one with a geometrically regular
local ring.
acceptable ringAcceptable rings are generalizations of excellent rings, with the conditions about regular rings in the definition replaced by conditions about Gorenstein rings.
adicThe
I-adic topology on a ring has a base of neighborhoods of 0 given by powers of the ideal
I.
affine ringAn affine ring
R over another ring
S (often a field) is a ring (or sometimes an
integral domain) that is
finitely generated over
S.
algebraic-geometrical local ringA local ring that is a localization of a finitely-generated domain over a field.
almost1. An element
x of a ring is called almost integral over a subring if there is a regular element
a of the subring so that
axn is in the subring for all positive integers
n.2. An
integral domain S is called almost finite over a subring
R if its field of quotients is a finite extension of the field of quotients of
Saltitude1. The
altitude of a ring is an archaic name for its
dimension.2. The altitude of an ideal is another name for its height
analytic1. The analytic spread of an ideal of a local ring is the
Krull dimension of the fiber at the special point of the local ring of the
Rees algebra of the ideal.2. The analytic deviation of an ideal is its analytic spread minus its height.3. An
analytic ring is a quotient of a ring of convergent power series in a finite number of variables over a field with a
valuation.
analyticallyThis often refers to properties of the completion of a local ring; cf. #formally1. A local ring is called
analytically normal if its completion is an
integrally closed domain.2. A local ring is called
analytically unramified if its completion has no nonzero
nilpotent elements.3. A local ring is called
analytically irreducible if its completion has no zero divisors.4. Two local rings are called
analytically isomorphic if their completions are isomorphic.
annihilatorThe annihilator of a subset of a module is the ideal of elements whose product with any element of the subset is 0.
ArtinArtinian1. Emil Artin2. Michael Artin3. An
Artinian module is a module satisfying the descending chain condition on submodules.4. An
Artinian ring is a ring satisfying the descending chain condition on ideals.5. The Artin-Rees lemma establishes a certain stability of filtration by an ideal.
ASLAcronym for algebra with straightening law.
associatedAn
associated prime of a module
M over a ring
R is a
prime ideal p such that
M has a submodule isomorphic to
R/
p.
Bass numberIf
M is a module over a local ring
R with residue field
k, then the
ith Bass number of
M is the
k-dimension of Ext
i
R(
k,
M).
Bézout domainA Bézout domain is an integral domain in which the sum of two principal ideals is a
principal ideal.
bigThe word "big" when applied to a module emphasizes that the module is not necessarily
finitely generated. In particular a big
Cohen–Macaulay module is a module that has a system of parameters for which it is regular.
Boolean ringA Boolean ring is a ring such that
x2=
x for all
x.
Bourbaki idealA Bourbaki ideal of a
torsion-free module M is an ideal isomorphic (as a module) to a torsion-free quotient of
M by a free submodule.
Buchsbaum ringA Buchsbaum ring is a Noetherian local ring such that every system of parameters is a weak sequence.
canonical"Canonical module" is an alternative term for a
dualizing module.
catenaryA ring is called catenary if all maximal chains between two prime ideals have the same length.
centerThe center of a valuation (or place) is the ideal of elements of positive order.
chainA strictly increasing or decreasing sequence of prime ideals.
characteristicThe characteristic of a ring is a non-negative integer generating the
Z-ideal of multiples of 1 that are zero.
clean1. A finitely generated module
M over a
Noetherian ring R is called clean if it has a finite filtration all of whose quotients are of the form
R/
p for
p an associated prime of
M. A stronger variation of this definition says that the primes
p must be minimal primes of the support of
M.2. An element of a ring is called clean if it is the sum of a unit and an idempotent, and is called almost clean if it is the sum of a regular element and an idempotent. A ring is called clean or almost clean if all its elements are clean or almost clean, and a module is called clean or almost clean if its endomorphism ring is clean or almost clean.
CMAbbreviation for
Cohen–Macaulay.
CoCoAThe CoCoA computer algebra system for computations in commutative algebra
codepthThe codepth of a finitely generated module over a Noetherian local ring is its dimension minus its depth.
codimensionThe codimension of a prime ideal is another name for its #height.
coefficient ring1. A complete Noetherian local ring2. A complete Noetherian local ring with finite residue field3. An alternative name for a
Cohen ringCohen1. Irvin Cohen2. A Cohen ring is a field or a complete
discrete valuation ring of mixed characteristic (0,p) whose
maximal ideal is generated by p.
Cohen–MacaulayA local ring is called Cohen–Macaulay if it is Noetherian and the Krull dimension is equal to the depth. A ring is called Cohen–Macaulay if it is Noetherian and all localizations at maximal ideals are Cohen–Macaulay.
coherent1. A module is called coherent if it is finitely generated and every homomorphism to it from a finitely generated module has a finitely generated kernel.A
coherent ring is a ring that is a coherent module over itself.
complete1. A local complete intersection ring is a Noetherian local ring whose completion is the quotient of a
regular local ring by an ideal generated by a
regular sequence.2. A complete local ring is a local ring that is complete in the topology (or rather uniformity) where the powers of the
maximal ideal form a base of the neighborhoods at 0.
completely integrally closedA domain
R is called completely integrally closed if, whenever all positive powers of some element
x of the quotient field are contained in a finitely generated
R module,
x is in
R.
completionThe completion of a module or ring
M at an ideal
I is the inverse limit of the modules
M/
InM.
composite1. Not prime2. The composite of a
valuation ring R and a valuation ring
S of its residue field is the inverse image of
S in
R.
conductorThe conductor of an integral domain
R is the annihilator of the
R-module
T/
R, where
T is the integral closure of
R in its quotient field.
congruence idealA congruence ideal of a surjective homomorphism
f:
B→
C of commutative rings is the image under
f of the annihilator of the kernel of
f.
connectedA graded algebra over a field
k is connected if its zeroth degree piece is
k.
conormalThe conormal module of a quotient of a ring by an ideal
I is the module
I/
I2.
constructibleFor a Noetherian ring, a
constructible subset of the spectrum is one that is a finite union of locally closed sets. For rings that are not Noetherian the definition of a constructible subset is more complicated.
contentThe content of a polynomial is a
greatest common divisor of its coefficients.
contractionThe contraction of an ideal is the ideal given by the inverse image of some ideal under a homomorphism of rings.
coprimaryA coprimary module is a module with exactly one associated prime..
coprime1. Two ideals are called coprime if their sum is the whole ring.2. Two elements of a ring are called coprime if the ideal they generate is the whole ring.
cotangentThe
cotangent space of a local ring with maximal ideal
m is the vector space
m/
m2 over the residue field.
Cox ringA Cox ring is a sort of universal homogeneous coordinate ring for a projective variety
decomposableAn module is called decomposable if it can be written as a direct sum of two non-zero submodules.
decomposition groupA decomposition group is a group of automorphisms of a ring whose elements fix a given prime ideal.
Dedekind domainA Dedekind domain is a Noetherian integrally closed domain of dimension at most 1.
defectdeficiencyThe
ramification defect or
ramification deficiency d of a valuation of a field
K is given by [
L:
K]=
defg where
e is the ramification index,
f is the inertia degree, and
g is the number of extensions of the valuation to a larger field
L. The number
d is a power
pδ of the characteristic
p, and sometimes δ rather than
d is called the ramification deficiency.
depthThe
I-depth (also called
grade) of a module
M over a ring
R, where
I is an ideal, is the smallest integer
n such that Ext
n
R(
R/
I,
M) is nonzero. When
I is the maximal ideal of a local ring this is just called the depth of
M, and if in addition
M is the local ring
R this is called the depth of the ring
R.
derivationAn additive homomorphism
d from a ring to a module that satisfies Leibniz's rule
d(
ab)=
ad(
b)+
bd(
a).
derivedThe
derived normal ring of an integral domain is its integral closure in its quotient field.
determinant moduleThe determinant module of a module is the top exterior power of the module.
determinantalThis often refers to properties of an ideal generated by determinants of minors of a matrix. For example, a determinantal ring is generated by the entries of a matrix, with relations given by the determinants of the minors of some fixed size.
deviationA
deviation of a local ring is an invariant that measures how far the ring is from being regular.
dimension1. The Krull dimension of a ring, often just called the dimension, is the maximal length of a chain of prime ideals, and the Krull dimension of a module is the maximal length of a chain of prime ideals containing its annihilator.2. The
weak dimension or flat dimension of a module is the shortest length of a flat resolution.3. The injective dimension of a module is the shortest length of an injective resolution.4. The projective dimension of a module is the shortest length of a projective resolution.5. The dimension of a vector space over a field is the minimal number of generators; this is unrelated to most other definitions of its dimension as a module over a field.6. The
homological dimension of a module may refer to almost any of the various other dimensions, such as weak dimension, injective dimension, or projective dimension.7. The
global dimension of a ring is the supremum of the projective dimensions of its modules.8. The weak global dimension of a ring is the supremum of the flat dimensions of its modules.9. The embedding dimension of a local ring is the dimension of its
Zariski tangent space.10. The dimension of a valuation ring over a field is the transcendence degree of its residue field; this is not usually the same as the Krull dimension.
discrete valuation ringA discrete valuation ring is an integrally closed Noetherian local ring of dimension 1.
divisibleA divisible module is a module such that multiplication by any regular element of the ring is surjective.
divisor1. A divisor of an integral domain is an equivalence class of non-zero
fractional ideals, where two such ideals are called equivalent if they are contained in the same principal fractional ideals.2. A Weil divisor of a ring is an element of the free abelian group generated by the codimension 1 prime ideals.3. Cartier divisor
divisorial idealA divisorial ideal of an integral domain is a non-zero
fractional ideal that is an intersection of principal fractional ideals.
domainA domain or integral domain is a ring with no zero-divisors and where 1≠0.
dominateA local ring
B is said to dominate a local ring
A if it contains
A and the maximal ideal of
B contains the maximal ideal of
A.
dualdualitydualizing1.
Grothendieck local duality is a duality for cohomology of modules over a local ring.2.
Matlis duality is a duality between Artinian and Noetherian modules over a complete local ring.3. Macaulay duality is a duality between Artinian and Noetherian modules over a complete local ring that is finitely generated over a field.4. A
dualizing module (also called a canonical module) for a Noetherian ring
R is a finitely-generated module
M such that for any maximal ideal
m, the
R/
m vector space
Extn
R(R/m,M) vanishes if
n≠ height(
m) and is 1-dimensional if
n=height(
m).5. A dualizing complex is a complex generalizing many of the properties of a dualizing module to rings that do not have a dualizing module.
DVRAbbreviation for discrete valuation ring.
EisensteinNamed after Gotthold Eisenstein1. The ring of Eisenstein integers is the ring generated by a primitive cube root of 1.2. An Eisenstein polynomial is a polynomial such that its leading term is 1, all other coefficients are divisible by a prime, and the constant term is not divisible by the square of the prime.3. The Eisenstein criterion states that an Eisenstein polynomial is
irreducible.4. An Eisenstein extension is an extension generated by a root of an Eisenstein polynomial.
embeddedAn embedded prime of a module is a non-minimal associated prime.
embedding dimensionSee dimension.
envelopeAn injective envelope (or hull) of a module is a minimal
injective module containing it.
equicharacteristicA local ring is called equicharacteristic if it has the same characteristic as its residue field.
essential1. A submodule
M of
N is called an essential submodule if it intersects every nonzero submodule of
N2. An
essential extension of a module
M is a module
N containing
M such that every non-zero submodule intersects
M.
essentially of finite typeAn algebra is said to be essentially of finite type over another algebra if it is a localization of a finitely generated algebra.
étale1. A morphism of rings is called étale if it is formally etale and locally finitely presented.2. An étale algebra over a field is a finite product of finite separable extensions.
Euclidean domainA Euclidean domain is an integral domain with a form of Euclid's algorithm.
exact zero divisorA zero divisor
x is said to be an
exact zero divisor if its annihilator,
A n n R ( x ) = { r ∈ R ∣ r x = 0 } , is a principal ideal
y R whose annihilator is
x R :
A n n R ( x ) = { r ∈ R ∣ r x = 0 } = y R and
A n n R ( y ) = { r ∈ R ∣ r y = 0 } = x R excellentAn
excellent ring is a universally catenary Grothendieck ring such that for every finitely generated algebra the singular points of the spectrum form a closed subset.
ExtThe
Ext functors, the derived functors of the Hom functor.
extension1. An extension of an ideal is the ideal generated by the image under a homomorphism of rings.2. An extension of a module may mean either a module containing it as a submodule or a module mapping onto it as a quotient module.3. An
essential extension of a module
M is a module containing
M such that every non-zero submodule intersects
M.
face ringAn alternative name for a
Stanley–Reisner ring.
factorialFactorial ring is an alternative name for a
unique factorization domain.
faithful1. A faithful module is a module whose annihilator is 0.
faithfully1. A faithfully
flat module over a ring
R is a flat module whose tensor product with any non-zero module is non-zero.2. A faithfully flat algebra over a ring
R is an algebra that is faithfully flat as a module.
field1. A commutative ring such that every nonzero element has an inverse2. The
field of fractions, or fraction field, of an integral domain is the smallest field containing it3. A residue field is the quotient of a ring by a maximal ideal4. A quotient field may mean either a residue field of a field of fractions
finiteA finite module (or algebra) over a ring usually means one that is finitely generated as a module. It may also mean one with a finite number of elements, especially in the term
finite field.
finite typeAn algebra over a ring is said to be of finite type if it is finitely generated as an algebra.
finitely generated1. A module over a ring is called finitely generated if every element is a linear combination of a fixed finite number of elements. If the module happens to be an algebra this is much stronger than saying it is finitely generated as an algebra.2. An algebra over a ring is called finitely generated if it is finitely generated as an algebra, which is much weaker than saying it is finitely generated as a module.3. An extension of fields is called finitely generated if elements of the larger field can all be expressed as rational functions of a finite generating set
Fitting idealThe Fitting ideal
In(
M) of a module
M generated by
g elements is the ideal generated by the determinants of the minors of size
g–
n of the matrix of relations defining the module.
flat1. A flat module is a module such that tensoring with it preserves exactness.2. A flat resolution is a resolution by flat modules.3. For flat dimension, see dimension.4. A module
M over a ring
R is called normally flat along an ideal
I if the
R/
I-module ⊕
InM/
In+1M is flat.5. a
flat cover of a module
M is a map from a flat module to
M with superfluous kernel
formally1. A homomorphism
f:
A→
B of rings is called formally smooth, formally unramified, or formally etale if for every
A-algebra
R with a nilpotent ideal
I, the natural map from Hom
A(
R/
I,
B) to Hom
A(
R,
B) is surjective, injective, or bijective. The algebra
B is then called a formally smooth, formally unramified, or formally etale
A-algebra.2. A Noetherian local ring is called formally
equidimensional (or quasi-unmixed) if its completion is equidimensional.3. Formally catenary rings are rings such that every quotient by a prime ideal is formally equidimensional. For Noetherian local rings this is equivalent to the ring being universally catenary.
fractional idealIf
K is the ring of fractions of an integral domain
R, then a fractional ideal of
R is a submodule of the
R-module
K contained in
kR for some
k in
K.
fractionary idealAn alternative name for fractional ideals
G-ringAn alternative name for a Grothendieck ring.
GaussianThe Gaussian ring is the ring of
Gaussian integers m+
ni.
GCD1. Abbreviation for greatest common divisor2. A
GCD domain is an integral domain such that any two elements have a greatest common divisor (GCD).
geometricallyThe word "geometrically" usually refers to properties that continue to hold after taking finite field extensions. For example, a ring
R over a field
k is called geometrically normal, geometrically regular, or geometrically reduced if
R⊗
kK is normal, regular, or reduced for every finite extension field
K of
k.
going down1. An extension
R⊆
S of commutative rings is said to have the going down property if whenever
p1⊆
p2 is a chain of prime ideals in
R and
q2 is a prime ideal of
S with
q2∩
R=
p2, there is a prime ideal
q1 of
S with
q1⊆
q2 and
q1∩
R=
p12. The going down theorem states that an integral extension
R⊆
S such that
S is a domain and
R is integrally closed has the going down property
going up1. An extension
R⊆
S of commutative rings is said to have the going up property if whenever
p1⊆
p2 is a chain of prime ideals in
R and
q1 is a prime ideal of
S with
q1∩
R=
p1, there is a prime ideal
q2 of
S with
q1⊆
q2 and
q2∩
R=
p22. The going up theorem states that an integral extension
R⊆
S has the going up property
Gorenstein1. Daniel Gorenstein2. A Gorenstein local ring is a Noetherian local ring that has finite injective dimension as a module over itself3. A
Gorenstein ring is a ring all of whose localizations at prime ideals are Gorenstein local rings.
gradeThe various uses of the term "grade" are sometimes inconsistent and incompatible with each other.1. The grade grade(
I,
M) of an ideal
I on a finitely-generated module
M over a Noetherian ring is the length of a maximal
M-regular sequence in
I. This is also called the depth of
I on
M2. The grade grade(
M) of a module
M over a ring
R is grade(Ann
M,
R), which for a finitely generated module over a Noetherian ring is the smallest
n such that Ext
n
R(
M,
R) is non-zero.3. The grade of a module
M over a Noetherian local ring with maximal ideal
I is the grade of
m on
I. This is also called the depth of
M. This is not consistent with the other definition of the grade of a module given above.4. The grade grade(
I) of an ideal is given the grade grade(
R/
I) of the module
R/
I. So the grade of the ideal
I is usually not the same as the grade of the module
I.
gradedA graded algebra or module is one that is a direct sum of pieces indexed by an abelian group, often the group of integers.
Gröbner basisA Gröbner basis is a set of generators for an ideal of a polynomial ring satisfying certain conditions.
GrothendieckNamed after Alexander Grothendieck1. A Grothendieck ring is a Noetherian ring whose formal fibers are geometrically regular.2.
Grothendieck local duality is a duality theorem for modules over local rings.
HCFAbbreviation for highest common factor
height1. The height of a prime ideal, also called its codimension or rank or altitude, is the supremum of the lengths of chains of prime ideals descending from it.2. The height of a valuation or place is the height of its valuation group, which is the number of proper convex subgroups of its valuation group.
HenselHenselianHenselizationNamed for Kurt Hensel1.
Hensel's lemma states that if
R is a complete local ring with maximal ideal
m and
P is a monic polynomial in
R[
x], then any factorization of its image
P in (
R/
m)[
x] into a product of coprime monic polynomials can be lifted to a factorization in
R[
x].2. A
Henselian ring is a local ring in which Hensel's lemma holds.3. The Henselization of a local ring is a Henselian ring constructed from it.
HilbertNamed after David Hilbert1. Hilbert ring is an alternative term for a
Jacobson ring.2. A Hilbert polynomial measures the rate of growth of a module over a
graded ring or local ring.3.
Hilbert's Nullstellensatz identifies
irreducible subsets of affine space with radical ideals of the coordinate ring.4.
Hilbert's syzygy theorem gives a finite free resolution of modules over a polynomial ring.5. The Hilbert basis theorem states that the ring of polynomials over a field is Noetherian, or more generally that any finitely generated algebra over a Noetherian ring is Noetherian.6. The
Hilbert–Burch theorem describes a free resolution of a quotient of a local ring with projective dimension 2.7. The
Hilbert–Kunz function measures the severity of singularities in a positive characteristic.
Hironaka1. Heisuke Hironaka2. A
Hironaka decomposition is a representation of a ring as a finite free module over a polynomial ring or regular local ring3. Hironaka's criterion states that a ring that is a finite module over a regular local ring or polynomial algebra is Cohen-Macaulay if and only if it is a free module
.Hodge1. W. V. D. Hodge2. A
Hodge algebra is an algebra with a special basis similar to a basis of standard monomials.
hullAn
injective hull (or envelope) of a module is a minimal injective module containing it.
idealA submodule of a ring. Special cases include:1. An
ideal of definition of a module
M over a local ring
R with maximal ideal
m is a proper ideal
I such that
mnM is contained in
IM for some
n.
idempotentAn element
x with
x2=
x.
incomparability propertyThe extension
A⊆
B is said to satisfy the
incomparability property if whenever
Q and
Q' are distinct primes of
B lying over prime
P in
A, then
Q⊈
Q' and
Q' ⊈
Q.
indecomposableA module is called indecomposable if it is not the direct sum of two proper submodules.
inertia groupAn inertia group is a group of automorphisms of a ring whose elements fix a given prime ideal and act trivially on the corresponding residue class ring.
initial idealThe initial ideal of an ideal
I in a graded ring is the ideal generated by the initial terms (homogeneous component of minimal degree) of elements in
I.
injective1. An injective module is one with the property that maps from submodules to it can be extended to larger modules.2. An injective envelope or
injective hull of a module is a smallest injective module containing it.3. An injective resolution is a resolution by injective modules.4. The injective dimension of a module is the smallest length of an injective resolution.
integralThe two different meanings of integral (no zero divisors, or every element being a root of a monic polynomial) are sometimes confused.1. An integral domain or integral ring is a nontrivial ring without zero-divisors.2. An element is called integral over a subring if it is a root of a monic polynomial with coefficients in the subring.3. An element
x of a ring is called almost integral over a subring if there is a regular element
a of the subring so that
axn is in the subring for all positive integers
n.4. The integral closure of a subring of a ring is the ring of all elements that are integral over it.5. An algebra over a ring is called an integral algebra if all its elements are integral over the ring.6. A ring is called locally integral if it is reduced and the localization at every prime ideal is integral.7. A domain is called integrally closed if it is its own integral closure in the field of fractions.
invertibleAn invertible fractional ideal is a fractional ideal that has an inverse in the
monoid of fractional ideals under multiplication.
irreducible1. An element of a ring is called irreducible if it cannot be written as a product of two non-units.2. An
irreducible ring is a ring where the zero ideal is not an intersection of two non-zero ideals, and more generally an irreducible module is a module where the zero module cannot be written as an intersection of non-zero submodules.3. An ideal or submodule is called irreducible if it cannot be written as an intersection of two larger ideals or submodules. If the ideal or submodule is the whole ring or module this is inconsistent with the definition of an irreducible ring or module.
irrelevantThe
irrelevant ideal of a graded algebra is generated by the elements of positive degree.
isolatedAn isolated prime of a module is a minimal associated prime.
J-0 ringA J-0 ring is a ring such that the set of regular points of the spectrum contains a non-empty open subset.
J-1 ringA J-1 ring is a ring such that the set of regular points of the spectrum is an open subset.
J-2 ringA J-2 ring is a ring such that any finitely generated algebra is a J-1 ring.
Jacobian1. The Jacobian matrix is a matrix whose entries are the partial derivatives of some polynomials.2. The
Jacobian ideal of a quotient of a polynomial ring by an ideal of pure codimension
n is the ideal generated by the size
n minors of the Jacobian matrix.3. The Jacobian criterion is a criterion stating that a local ring is geometrically regular if and only if the rank of a corresponding Jacobian matrix is the maximum possible.
JacobsonNamed after Nathan Jacobson1. The
Jacobson radical of a ring is the intersection of its maximal ideals.2. A Jacobson ring is a ring such that every prime ideal is an intersection of maximal ideals.
Japanese ringA Japanese ring (also called N-2 ring) is an integral domain
R such that for every finite extension
L of its quotient field
K, the integral closure of
R in
L is a finitely generated
R module.
Kähler differentialThe module of
Kähler differentials of a ring is the universal module with a derivation from the ring to it.
Kleinian integerThe Kleinian integers are the integers of the imaginary quadratic field of discriminant −7.
Koszul complexThe Koszul complex is a free resolution constructed from a regular sequence.
Krull ringA Krull ring (or Krull domain) is a ring with a well behaved theory of prime factorization.
Krull dimensionSee dimension.
Laskerian ringA Laskerian ring is a ring in which any ideal has a
primary decomposition.
lengthThe
length of a module is the length of any
composition series.
linearly disjointTwo subfields of a field extension
K over a field
k are called linearly disjoint if the natural map from their tensor product over
k to the subfield of
K they generate is an isomorphism.
linkedlinkageA relation between ideals in a Gorenstein ring.
locallocalizationlocally1. A local ring is a ring with just one maximal ideal. In older books it is sometimes also assumed to be Noetherian.2. The
local cohomology of a module
M is given by the derived functors of direct-lim
k Hom
R(
R/
Ik,
M).3. The localization of a ring at a (multiplicative) subset is the ring formed by forcing all elements of the mutliplicative subset to be invertible.4. The localization of a ring at a prime ideal is the localization of the multiplicative subset given by the complement of the prime ideal.5. A ring is called locally integral if it is reduced and the localization at every prime ideal is integral.6. A ring has some property locally if its spectrum is covered by spectra of localizations
R[1/
a] having the property.
lying over propertyAn extension of rings has the lying over property if the corresponding map between their prime spectra is surjective.
MacaulayNamed after Francis Sowerby Macaulay1. A Macaulay ring is an alternative name for a Cohen–Macaulay ring.2. The Macaulay computer algebra system.3. Macaulay duality is a special case of
Matlis duality for local rings that are finitely generated algebras over a field.
MatlisNamed after Eben Matlis1. Matlis duality is a duality between Artinian and Noetherian modules over a complete Noetherian local ring.2. A Matlis module is an injective envelope of the residue field of a local ring.
maximal1. A maximal ideal is a maximal element of the set of proper ideals of a ring.2. A maximal Cohen–Macaulay module over a Noetherian local ring
R is a Cohen–Macaulay module whose dimension is the same as that of
R.
minimal1. A
minimal prime of an ideal is a minimal element of the set of prime ideals containing it.2. A minimal resolution of a module is a resolution contained in any other resolution.3. A minimal primary decomposition is a primary decomposition with the smallest possible number of terms.4. A minimal prime of a domain is a minimal element of the set of nonzero prime ideals.
miracle1. Miracle flatness is another name for Hironaka's criterion, which says that a local ring that is finite over a regular local ring is Cohen-Macaulay if and only if it is a flat module
Mittag-Leffler conditionThe Mittag-Leffler condition is a condition on an inverse system of modules that ensures the vanishing of the first derived functor of the inverse limit
modular systemAn archaic term for an ideal
monomialA product of powers of generators of an algebra
Mori domainA Mori domain is an integral domain satisfying the ascending chain conditions on integral divisorial ideals.
multiplicative subsetA subset of a ring closed under multiplication
multiplicityThe multiplicity of a module
M at a prime ideal
p or a ring
R is the number of times
R/
p occurs in
M, or more precisely the length of the localization
Mp as a module over
Rp.
N-1An N-1 ring is an integral domain whose integral closure in its quotient field is a finitely generated module.
N-2An N-2 ring is the same as a Japanese ring, in other words an integral domain whose integral closure in any finite extension of its quotient field is a finitely generated module.
Nagata ringA
Nagata ring is a Noetherian universally Japanese ring. These are also called pseudo-geometric rings.
Nakayama's lemmaNakayama's lemma states that if a finitely generated module
M is equal to
IM where
I is the
Jacobson radical, then
M is zero.
neatOccasionally used to mean "unramified".
nilpotentSome power is zero. Can be applied to elements of a ring or ideals of a ring. See nilpotent.
nilradicalThe
nilradical of a ring is the ideal of nilpotent elements.
NoetherNoetherianNamed after Emmy Noether1. A
Noetherian module is a module such that every submodule is finitely generated.2. A Noetherian ring is a ring that is a Noetherian module over itself, in other words every ideal is finitely generated.3. Noether normalization represents a finitely generated algebra over a field as a finite module over a polynomial ring.
normalA normal domain is an integral domain that is integrally closed in its quotient field.A normal ring is a ring whose localizations at prime ideals are normal domains.
normally flatA module
M over a ring
R is called normally flat along an ideal
I if the
R/
I-module ⊕
InM/
In+1M is flat.
NullstellensatzGerman for "zero locus theorem".Over algebraically closed field, the weak Nullstellensatz states that the points of affine space correspond to maximal ideals of its coordinate ring, and the strong Nullstellensatz states that closed subsets of a variety correspond to radical ideals of its coordinate ring.
orientationAn orientation of a module over a ring
R is an isomorphism from the highest non-zero exterior power of the module to
R.
parafactorialA Noetherian local ring
R is called parafactorial if it has depth at least 2 and the
Picard group Pic(Spec(
R) −
m) of its spectrum with the closed point
m removed is trivial.
parameterSee #system of parameters.
perfectIn non-commutative ring theory,
perfect ring has an unrelated meaning.1. A module is called perfect if its projective dimension is equal to its grade.2. An ideal
I of a ring
R is called perfect if
R/
I is a perfect module.3. A field is called perfect if all finite extension fields are separable.
PicPicard groupThe Picard group Pic(
R) of a ring
R is the group of isomorphism classes of finite projective modules of rank 1.
PIDAbbreviation for
principal ideal domain.
placeA place of a field
K with values in a field
L is a map from
K∪∞ to
L∪∞ preserving addition and multiplication and 1.
presentableA presentable ring is one that is a quotient of a regular ring.
prime1. A prime ideal is a proper ideal whose complement is closed under multiplication.2. A
prime element of a ring is an element that generates a prime ideal.3. A
prime local ring is a localization of the integers at a prime ideal.4. "Prime sequence" is an alternative name for a regular sequence.
primary1. A
primary ideal is a proper ideal
p of a ring
R such that if
rm is in
p then either
m is in
p or some power of
r is in
p. More generally a primary submodule of a module
M is a submodule
N of
M such that if
rm is in
N then either
m is in
N or some power of
r annihilates
N.2. A
primary decomposition of an ideal or submodule is an expression of it as a finite intersection of primary ideals or submodules.
principal1. A principal ideal is an ideal generated by one element.2. A
principal ideal ring is a ring such that every ideal is principal.3. A
principal ideal domain is an integral domain such that every ideal is principal.
projective1. A
projective module is a module such that every epimorphism to it splits..2. A projective resolution is a resolution by projective modules.3. The projective dimension of a module is the smallest length of a projective resolution.
Prüfer domainA Prüfer domain is a semiherediary integral domain.
pseudo1. A finitely generated module
M is called
pseudo-zero if
M p = 0 for all prime ideals
p of height
≤ 1 .2. A morphism of modules is
pseudo-injective if the kernel is pseudo-zero.3. A morphism of modules is
pseudo-surjective if the cokernel is pseudo-zero."Pseudogeometric ring" is an alternative name for a Nagata ring.
pure1. A
pure submodule M of a module
N is a submodule such that
M⊗
A is a submodule of
N⊗
A for all modules
A.2. A pure subring
R of a ring
R is a subring such that
M=
M⊗
S is a submodule of
M⊗
SR for all
S-modules
M.3. A pure module
M over a ring
R is a module such that dim(
M) = dim(
R/
p) for every associated prime
p of
M.
purely1. An element
x is purely inseparable over a field if either the field has characteristic zero and
x is in the field or the field has characteristic
p and
x p r is in the field for some
r.2. A field extension is purely inseparable if it consists of purely inseparable elements.
quasi1. A quasi-excellent ring is a Grothendieck ring such that for every finitely generated algebra the singular points of the spectrum form a closed subset.2. A
quasi-isomorphism is a morphism between complexes inducing an isomorphism on homology.3.
Quasi-local ring was an old term for a (possibly non-Noetherian) local ring in books that assumed local rings to be Noetherian.4.
Quasi-unmixed; see formally equidimensional.
quotient1. A quotient of a ring by an ideal, or of a module by a submodule.2. A quotient field (or the field of fractions) of an integral domain is the localization at the prime ideal zero. This is sometimes confused with the first meaning.
RnThe condition
Rn on a ring (for a non-negative integer
n), "regular in codimension
n", says that localization at any prime ideal of height at most
n is regular. (cf. Serre's criterion on normality)
radical1. The Jacobson radical of a ring.2. The nilradical of a ring.3. A radical of an element
x of a ring is an element such that some positive power is
x.4. The
radical of an ideal is the ideal of radicals of its elements.5. The radical of a submodule
M of a module
N is the ideal of elements
x such that some power of
x maps
N into
M.6. A
radical extension of a ring is an extension generated by radicals of elements.
ramification groupA ramification group is a group of automorphisms of a ring
R fixing some given prime ideal
p and acting trivially on
R/
pn for some integer
n>1. (When
n=1 it is called the inertia group.)
rank1. Another older name for the height of a prime ideal.2. The rank or height of a valuation is the Krull dimension of the corresponding valuation ring.3. The rational or real rank of a valuation or place is the rational or real rank of its valuation group, which is the dimension of the corresponding rational or real vector space constructed by tensoring the valuation group with the rational or real numbers.3. The minimum number of generators of a free module.4. The rank of a module
M over an integral domain
R is the dimension of the vector space
M⊗
K over the quotient field
K of
R.
reduced1.
reduced ring is one with no non-zero nilpotent elements.2. Over a ring of characteristic
p>0, a polynomial in several variables is called reduced if it has degree less than
p in each variable.
reducibleSee irreducible.
reductionA reduction ideal of an ideal
I with respect to a module
M is an ideal
J with
JInM=
In+1M for some positive integer
n.
Rees1. David Rees2. The Rees algebra of an ideal
I is
⊕ n = 0 ∞ t n I n = R [ I t ] ⊂ R [ t ] . 3. A
Rees decomposition of an algebra is a way of writing in it in terms of polynomial subalgebras
reflexiveA module
M is reflexive if the canonical map
M → M ∗ ∗ , m ↦ ⟨ ⋅ , m ⟩ is an isomorphism.
regular1. A regular local ring is a Noetherian local ring whose dimension is equal to the dimension of its tangent space.2. A regular ring is a ring whose localizations at all prime ideals are regular.3. A regular element of a ring is an element that is not a zero divisor.4. An
M-regular element of a ring for some module
M is an element of
R that does not annihlate any non-zero element of
M.5. A regular sequence with respect to some module
M is a sequence of elements
a1,
a2,...,
an of
R such that each
am+1 is regular for the module
M/(
a1,
a2,...,
am)
M.6. In non-commutative ring theory, a
von Neumann regular ring is a ring such that for every element
x there is an element
y with
xyx=
x. This is unrelated to the notion of a regular ring in commutative ring theory. In commutative algebra, commutative rings with this property are called
absolutely flat.
regularityCastelnuovo–Mumford regularity is an invariant of a graded module over a graded ring related to the vanishing of various cohomology groups.
residue fieldThe quotient of a ring, especially a local ring, by a maximal ideal.
resolutionA resolution of a module is a chain complex whose only non-zero homology group is the module.
SnThe condition
Sn on a ring (for a non-negative integer
n) says that the depth of the localization at any prime ideal is the height of the prime ideal whenever the depth is less than
n. (cf. Serre's criterion on normality)
saturatedA subset
X of a ring or module is called saturated with respect to a multiplicative subset
S if
xs in
X and
s in
S implies that
x is in
X.
saturationThe saturation of a subset of a ring or module is the smallest saturated subset containing it.
semilocalsemi-local1. A semilocal ring is a ring with only a finite number of maximal ideals.2. "Semi-local ring" is an archaic term for a
Zariski ring.
seminormalA
seminormal ring is a commutative
reduced ring in which, whenever
x,
y satisfy
x 3 = y 2 , there is
s with
s 2 = x and
s 3 = y .
separableAn algebra over a field is called separable if its extension by any finite purely inseparable extension is reduced.
separatedAn alternative term for Hausdorff, usually applied to a topology on a ring or module.
simpleA
simple field is an archaic term for an algebraic number field whose ring of integers is a
unique factorization domainsingular1. Not regular2. Special in some way3. The
singular computer algebra system for commutative algebra
smoothA
smooth morphism of rings is a homomorphism that is formally smooth and finitely presented. These are analogous to submersions in differential topology. An algebra over a ring is called smooth if the corresponding morphism is smooth.
socleThe socle of a module is the sum of its simple submodules.
spectrum1. The prime
spectrum of a ring, often just called the spectrum, is a locally ringed space whose underlying topological space is the set of prime ideals with the
Zariski topology.2. The maximal spectrum of a ring is the set of maximal ideals with the Zariski topology.
stableA decreasing filtration of a module is called stable (with respect to an ideal
I) if
Mn+1=
IMn for all sufficiently large
n.
stably freeA module
M over a ring
R is called stably free if
M⊕
Rn is free for some natural number
n.
Stanley1. Richard P. Stanley2. A
Stanley–Reisner ring is a quotient of a polynomial algebra by a square-free monomial ideal.3. A
Stanley decomposition is a way of writing a ring in terms of polynomial subrings
strictly localA ring is called strictly local if it is a local Henselian ring whose residue field is separably closed.
superfluousA submodule
M of
N is called superfluous if
M+
X=
N implies
X=
N (for submodules
X)
superheightThe superheight of an ideal is the supremum of the nonzero codimensions of the proper extensions of the ideal under ring homomorphisms.
supportThe
support of a module M is the set of prime ideals
p such that the localization of
M at
p is non-zero.
symbolic powerThe symbolic power
p(n) of a prime ideal
p is the set of elements
x such that
xy is in
pn for some
y not in
p. It is the smallest
p-
primary ideal containing
pn.
system of parametersA set of dim
R (if finite) elements of a local ring
R with maximal ideal
m that generates an
m-primary ideal. It is a
regular system of parameters if it actually generates
m.
syzygyAn element of the kernel of one of the maps in a free resolution of a module.
tangentThe
Zariski tangent space of a local ring is the dual of its cotangent space.
tight closureThe tight closure
I* of an ideal
I of a ring with positive characteristic
p>0 consists of the elements
z such that there is some
c not in any minimal prime ideal such that
czq is in
I[q] for all sufficiently large powers
q of
p, where
I[q] is the ideal generated by all
qth powers of elements of
I.
TorThe Torsion functors, the derived functors of the tensor product.
torsion1. A torsion element of a module over a ring is an element annihilated by some regular element of the ring.2. The torsion submodule of a module is the submodule of torsion elements.3. A torsion-free module is a module with no torsion elements other than zero.4. A torsion module is one all of whose elements are torsion elements.5. The torsion functors Tor are the derived functors of the tensor product.6. A
torsionless module is a module isomorphic to a submodule of a free module.
totalThe
total ring of fractions or total quotient ring of a ring is formed by forcing all non zero divisors to have inverses.
trivialA trivial ring is a ring with only one element.
typeThe type of a finitely generated module
M of depth
d over a Noetherian local ring
R with residue field
k is the dimension (over
k) of Ext
d
R(
k,
M).
UFDAbbreviation for unique factorization domain.
unibranchA reduced local ring is called unibranch if it is integral and its integral closure is a local ring. A local ring is called unibranch if the corresponding reduced local ring is unibranch.
unimodular rowA sequence of elements
v 1 , … , v n in a ring that generate the unit ideal.
unique factorization domainAlso called a factorial domain. A unique factorization domain is an integral domain such that every element can be written as a product of primes in a way that is unique up to order and multiplication by units.
universallyA property is said to hold universally if it holds for various base changes. For example a ring is universally catenary if all finitely generated algebras over it are catenary.
universalA universal field is an algebraically closed field with the uncountable transcendence degree over its prime field.
unmixedAn ideal
I of a ring
R is called unmixed if all associated primes of
R/
I have the same height.
unramified1. An unramified morphism of rings is a homomorphism that is formally unramified and finitely presented. These are analogous to immersions in differential topology. An algebra over a ring is called unramified if the corresponding morphism is unramified.2. An ideal in a polynomial ring over a field is called unramified for some extension of the field if the corresponding extension of the ideal is an intersection of prime ideals.
valuation1. A valuation is a homomorphism from the non-zero elements of a field to a totally ordered abelian group, with properties similar to the
p-adic valuation of the rational numbers.2. A valuation ring is an integral domain
R such that if
x is in its quotient field and if it is nonzero then either
x or its inverse is in
R.3. A
valuation group is a totally ordered abelian group. The valuation group of a valuation ring is the group of non-zero elements of the quotient field modulo the group of units of the valuation ring.
weak1. Weak dimension is an alternative name for flat dimension of a module.2. A sequence
( a 1 , ⋯ , a r ) of elements of a maximal ideal
m is called a weak sequence if
m ⋅ ( ( a 1 , ⋯ , a i − 1 ) : a i ) ⊂ ( a 1 , ⋯ , a i − 1 ) for all
i Weierstrass ringA Weierstrass ring is local ring that is Henselian, pseudo-geometric, and such that any quotient ring by a prime ideal is a finite extension of a regular local ring.
Zariski1. Oscar Zariski2. A
Zariski ring is a complete Noetherian topological ring with a basis of neighborhoods of 0 given by the powers of an ideal in the Jacobson radical (formerly called a semi-local ring).3. The Zariski topology is the topology on the spectrum of a ring whose closed sets are the sets of prime ideals containing a given ideal.4.
Zariski's lemma says that if a field is a finitely generated algebra over another field then it is a finite dimensional vector space over the field5. Zariski's main lemma on holomorphic functions says the
n-th symbolic power of a prime ideal in a polynomial ring is the intersection of the
n-th powers of the maximal ideals containing the prime ideal.6. The Zariski tangent space of a local ring with maximal ideal
m is the dual of the vector space
m/
m2zero divisorA zero divisor in a ring is an element whose product with some nonzero element is 0.