In commutative and homological algebra, depth is an important invariant of rings and modules. Although depth can be defined more generally, the most common case considered is the case of modules over a commutative Noetherian local ring. In this case, the depth of a module is related with its projective dimension by the Auslander–Buchsbaum formula. A more elementary property of depth is the inequality
Contents
where dim M denotes the Krull dimension of the module M. Depth is used to define classes of rings and modules with good properties, for example, Cohen-Macaulay rings and modules, for which equality holds.
Definition
Let R be a commutative Noetherian ring, I an ideal of R and M a finite R-module with the property that IM is properly contained in M. Then the I-depth of M, also commonly called the grade of M, is defined as
By definition, the depth of a ring R is its depth as a module over itself.
By a theorem of David Rees, the depth can also be characterized using the notion of a regular sequence.
Theorem (Rees)
Suppose that R is a commutative Noetherian local ring with the maximal ideal
Depth and projective dimension
The projective dimension and the depth of a module over a commutative Noetherian local ring are complementary to each other. This is the content of the Auslander–Buchsbaum formula, which is not only of fundamental theoretical importance, but also provides an effective way to compute the depth of a module. Suppose that R is a commutative Noetherian local ring with the maximal ideal
Depth zero rings
A commutative Noetherian local ring R has depth zero if and only if its maximal ideal
For example, the ring