In linear algebra, the generalized singular value decomposition (GSVD) is the name of two different techniques based on the singular value decomposition. The two versions differ because one version decomposes two (or more) matrices (much like higher order PCA) and the other version uses a set of constraints imposed on the left and right singular vectors.
Contents
Higher order version
The generalized singular value decomposition (GSVD) is a matrix decomposition more general than the singular value decomposition. It is used to study the conditioning and regularization of linear systems with respect to quadratic semi-norms.
Let
and
where
Weighted version
The weighted version of the generalized singular value decomposition (GSVD) is a constrained matrix decomposition with constraints imposed on the left and right singular vectors of the singular value decomposition. This form of the GSVD is an extension of the SVD as such. Given the SVD of an m×n real or complex matrix M
where
Where I is the Identity Matrix and where
The weighted form of the GSVD is called as such because, with the correct selection of weights, it generalizes many techniques (such as multidimensional scaling and linear discriminant analysis)
Applications
The GSVD has been successfully applied to signal processing and big data, e.g., in genomic signal processing. These applications also inspired a higher-order GSVD (HO GSVD) and a tensor GSVD.