![]() | ||
In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the points xi and weights wi for i = 1, ..., n. The domain of integration for such a rule is conventionally taken as [−1, 1], so the rule is stated as
Contents
- GaussLegendre quadrature
- Change of interval
- Other forms
- Fundamental theorem
- General formula for the weights
- Proof that the weights are positive
- Computation of Gaussian quadrature rules
- Gautschis theorem
- The Golub Welsch algorithm
- Error estimates
- GaussKronrod rules
- GaussLobatto rules
- References
Gaussian quadrature as above will only produce good results if the function f(x) is well approximated by a polynomial function within the range [−1, 1]. The method is not, for example, suitable for functions with singularities. However, if the integrated function can be written as
Common weighting functions include
It can be shown (see Press, et al., or Stoer and Bulirsch) that the evaluation points xi are just the roots of a polynomial belonging to a class of orthogonal polynomials.
Gauss–Legendre quadrature
For the simplest integration problem stated above, i.e. with
Some low-order rules for solving the integration problem are listed below (over interval [−1, 1], see the section below for other intervals).
Change of interval
An integral over [a, b] must be changed into an integral over [−1, 1] before applying the Gaussian quadrature rule. This change of interval can be done in the following way:
Applying the Gaussian quadrature rule then results in the following approximation:
Other forms
The integration problem can be expressed in a slightly more general way by introducing a positive weight function ω into the integrand, and allowing an interval other than [−1, 1]. That is, the problem is to calculate
for some choices of a, b, and ω. For a = −1, b = 1, and ω(x) = 1, the problem is the same as that considered above. Other choices lead to other integration rules. Some of these are tabulated below. Equation numbers are given for Abramowitz and Stegun (A & S).
Fundamental theorem
Let pn be a nontrivial polynomial of degree n such that
If we pick the n nodes xi to be the zeros of pn, then there exist n weights wi which make the Gauss-quadrature computed integral exact for all polynomials h(x) of degree 2n − 1 or less. Furthermore, all these nodes xi will lie in the open interval (a, b) (Stoer & Bulirsch 2002, pp. 172–175).
The polynomial pn is said to be an orthogonal polynomial of degree n associated to the weight function ω(x). It is unique up to a constant normalization factor. The idea underlying the proof is that, because of its sufficiently low degree, h(x) can be divided by
Because of the choice of nodes xi, the corresponding relation
holds also. The exactness of the computed integral for
General formula for the weights
The weights can be expressed as
where
because r(x) has degree less than n and is thus fixed by the values it attains at n different points. Multiplying both sides by ω(x) and integrating from a to b yields
The weights wi are thus given by
This integral expression for
We can write
where
We can thus write the integral expression for the weights as
In the integrand, writing
yields
provided
is a polynomial of degree k-1 which is then orthogonal to
We can evaluate the integral on the right hand side for
where s(x) is a polynomial of degree
We can then write
The term in the brackets is a polynomial of degree
According to Eq. (2), the weights are obtained by dividing this by
Proof that the weights are positive
Consider the following polynomial of degree 2n-2
where as above the xj are the roots of the polynomial
Since both
Computation of Gaussian quadrature rules
For computing the nodes xi and weights wi of Gaussian quadrature rules, the fundamental tool is the three-term recurrence relation satisfied by the set of orthogonal polynomials associated to the corresponding weight function. For n points, these nodes and weights can be computed in O(n2) operations by an algorithm derived by Gautschi (1968).
Gautschi's theorem
Gautschi's theorem (Gautschi, 1968) states that orthogonal polynomials
and scalar product defined
for
Now if
all scalar products vanish except for the first one and the one where
However, if the scalar product satisfies
or
(with the convention
(the last because of
The Golub-Welsch algorithm
The three-term recurrence relation can be written in the matrix form
The zeros
For computing the weights and nodes, it is preferable to consider the symmetric tridiagonal matrix
J and
where
See, for instance, (Gil, Segura & Temme 2007) for further details.
Error estimates
The error of a Gaussian quadrature rule can be stated as follows (Stoer & Bulirsch 2002, Thm 3.6.24). For an integrand which has 2n continuous derivatives,
for some ξ in (a, b), where pn is the monic (i.e. the leading coefficient is 1) orthogonal polynomial of degree n and where
In the important special case of ω(x) = 1, we have the error estimate (Kahaner, Moler & Nash 1989, §5.2)
Stoer and Bulirsch remark that this error estimate is inconvenient in practice, since it may be difficult to estimate the order 2n derivative, and furthermore the actual error may be much less than a bound established by the derivative. Another approach is to use two Gaussian quadrature rules of different orders, and to estimate the error as the difference between the two results. For this purpose, Gauss–Kronrod quadrature rules can be useful.
Gauss–Kronrod rules
If the interval [a, b] is subdivided, the Gauss evaluation points of the new subintervals never coincide with the previous evaluation points (except at zero for odd numbers), and thus the integrand must be evaluated at every point. Gauss–Kronrod rules are extensions of Gauss quadrature rules generated by adding n + 1 points to an n-point rule in such a way that the resulting rule is of order 2n + 1. This allows for computing higher-order estimates while re-using the function values of a lower-order estimate. The difference between a Gauss quadrature rule and its Kronrod extension are often used as an estimate of the approximation error.
Gauss–Lobatto rules
Also known as Lobatto quadrature (Abramowitz & Stegun 1972, p. 888), named after Dutch mathematician Rehuel Lobatto. It is similar to Gaussian quadrature with the following differences:
- The integration points include the end points of the integration interval.
- It is accurate for polynomials up to degree 2n–3, where n is the number of integration points (Quarteroni, Sacco & Saleri 2000).
Lobatto quadrature of function f(x) on interval [−1, 1]:
Abscissas: xi is the
Weights:
Remainder:
Some of the weights are: