Puneet Varma (Editor)

Gamma ray laser

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Originally published
  
1989

A gamma-ray laser, or graser, would produce coherent gamma rays, just as an ordinary laser produces coherent photon beams. It would be powered by nuclear transitions from a nuclear isomer. To construct a gamma ray laser, one must identify a suitable isomer, purify it, create a crystal from the purified material, and assemble a configuration that leads to the emission of a coherent gamma-ray beam. Because the wave length of gamma rays are shorter than that of x-rays, such a device, which has yet to be realized, would potentially be very useful in applications such as high-resolution imaging, surgery, and communications, as well as high-intensity applications.

Research to solve the difficulties inherent in the construction of a practical gamma-ray laser continues. In his 2003 Nobel lecture, Vitaly Ginzburg cited the gamma-ray laser as one of the thirty most important problems in physics.

The search for a gamma-ray laser is interdisciplinary, including quantum mechanics, nuclear and optical spectroscopy, chemistry, solid-state physics, metallurgy, as well as the generation, moderation, and interaction of neutrons, and involves specialized knowledge and research in all these fields. The subject involves both basic science and engineering technology.

Research

The problem of getting a sufficient concentration of resonant excited (isomeric) nuclear states for collective stimulated emission to occur turns on the broadening of the gamma-ray spectral line. Of the two forms of broadening, homogeneous broadening is simply the result of the lifetime of the isomeric state: the shorter the lifetime, the more broadened the line. Inhomogeneous broadening is all the mechanisms by which the homogeneously broadened line is spread over the spectrum.

The most familiar inhomogeneous broadening is Doppler recoil broadening from thermal motion of molecules in the solid containing the excited isomer and recoil from gamma-ray emission, in which the emission spectrum is both shifted and broadened. Isomers in solids can emit a sharp component superimposed on the Doppler-broadened background; this is called the Mössbauer effect. This recoilless radiation exhibits a sharp line on top of the Doppler-broadened background that is only slightly shifted from the center of the background.

With the inhomogeneous background removed, and a sharp line, it would seem that we have the conditions for gain. But other difficulties that would degrade gain are unexcited states that would resonantly absorb the radiation, opaque impurities, and loss in propagation through the crystal in which the active nuclei are embedded. Much of the latter can be overcome by clever matrix crystal alignment to exploit the transparency provided by the Borrmann effect.

Another difficulty, the graser dilemma, is that properties that should enable gain and those that would permit sufficient nuclear inversion density seem incompatible. The time required to activate, separate, concentrate, and crystalize an appreciable number of excited nuclei by conventional radiochemistry is at least a few seconds. To have the inversion persist, the lifetime of the excited state must be considerably longer. Furthermore, the heating that would result from neutron-pumping the inversion in situ seems incompatible with maintaining the Mössbauer effect, although there are still avenues to explore.

Heating may be reduced by two-stage neutron-gamma pumping, in which neutron capture occurs in a parent-doped converter where it generates Mössbauer radiation, which is then absorbed by ground-state nuclei in the graser. Two-stage pumping of multiple levels offers multiple advantages.

Another approach is to use nuclear transitions driven by collective electron oscillations. The scheme would employ a triad of isomeric states: a long-lived storage state, in addition to an upper and lower lasing state. The storage state would be energetically close to the short-lived upper lasing state but separated by a forbidden transition involving one quantum unit of spin angular momentum. The graser would be enabled by a very intense optical laser to slosh the electron cloud back and forth and saturate the forbidden transition in the near field of the cloud. The population of the storage state would then be quickly equalized with the upper lasing state whose transition to the lower lasing state would be both spontaneous and stimulated by resonant gamma radiation. A “complete” chart of nuclides likely contains a very large number of isomeric states, and the existence of such a triad seems likely, but it has yet to be found.

Nonlinearities can result in both spatial and temporal harmonics in the near field at the nucleus, opening the range of possibilities for rapid transfer from the storage state to the upper lasing state using other kinds of triads involving transition energies at multiples of the optical laser quantum energy and at higher multipolarities.

References

Gamma-ray laser Wikipedia


Similar Topics