![]() | ||
Parameters p ∈ ( 0 , 1 ) {displaystyle pin (0,1)} β > 0 {displaystyle eta >0} Support x ∈ [ 0 , ∞ ) {displaystyle xin [0,infty )} PDF 1 − ln p × β ( 1 − p ) e − β x 1 − ( 1 − p ) e − β x {displaystyle {rac {1}{-ln p}} imes {rac {eta (1-p)e^{-eta x}}{1-(1-p)e^{-eta x}}}} CDF 1 − ln ( 1 − ( 1 − p ) e − β x ) ln p {displaystyle 1-{rac {ln(1-(1-p)e^{-eta x})}{ln p}}} Mean − polylog ( 2 , 1 − p ) β ln p {displaystyle -{rac {{ ext{polylog}}(2,1-p)}{eta ln p}}} Median ln ( 1 + p ) β {displaystyle {rac {ln(1+{sqrt {p}})}{eta }}} |
In probability theory and statistics, the Exponential-Logarithmic (EL) distribution is a family of lifetime distributions with decreasing failure rate, defined on the interval [0, ∞). This distribution is parameterized by two parameters
Contents
Introduction
The study of lengths of organisms, devices, materials, etc., is of major importance in the biological and engineering sciences. In general, the lifetime of a device is expected to exhibit decreasing failure rate (DFR) when its behavior over time is characterized by 'work-hardening' (in engineering terms) or 'immunity' (in biological terms).
The exponential-logarithmic model, together with its various properties, are studied by Tahmasbi and Rezaei (2008) This model is obtained under the concept of population heterogeneity (through the process of compounding).
Distribution
The probability density function (pdf) of the EL distribution is given by Tahmasbi and Rezaei (2008)
where
The EL reduces to the exponential distribution with rate parameter
The cumulative distribution function is given by
and hence, the median is given by
Moments
The moment generating function of
where
where
The moments of
where
Hence the mean and variance of the EL distribution are given, respectively, by
The survival, hazard and mean residual life functions
The survival function (also known as the reliability function) and hazard function (also known as the failure rate function) of the EL distribution are given, respectively, by
The mean residual lifetime of the EL distribution is given by
where
Random number generation
Let U be a random variate from the standard uniform distribution. Then the following transformation of U has the EL distribution with parameters p and β:
Estimation of the parameters
To estimate the parameters, the EM algorithm is used. This method is discussed by Tahmasbi and Rezaei (2008). The EM iteration is given by
Related distributions
The EL distribution has been generalized to form the Weibull-logarithmic distribution.
If X is defined to be the random variable which is the minimum of N independent realisations from an exponential distribution with rate paramerter β, and if N is a realisation from a logarithmic distribution (where the parameter p in the usual parameterisation is replaced by (1 − p)), then X has the exponential-logarithmic distribution in the parameterisation used above.