![]() | ||
In thermodynamics and solid state physics, the Debye model is a method developed by Peter Debye in 1912 for estimating the phonon contribution to the specific heat (heat capacity) in a solid. It treats the vibrations of the atomic lattice (heat) as phonons in a box, in contrast to the Einstein model, which treats the solid as many individual, non-interacting quantum harmonic oscillators. The Debye model correctly predicts the low temperature dependence of the heat capacity, which is proportional to
Contents
- Derivation
- Debyes derivation
- Another derivation
- Low temperature limit
- High temperature limit
- Debye versus Einstein
- Debye temperature table
- Extension to other quasi particles
- Extension to liquids
- References
See M. Shubin and T. Sunada for a rigorous treatment of the Debye model.
Derivation
The Debye model is a solid-state equivalent of Planck's law of black body radiation, where one treats electromagnetic radiation as a gas of photons in a box. The Debye model treats atomic vibrations as phonons in a box (the box being the solid). Most of the calculation steps are identical.
Consider a cube of side
where
where
in which
in which
The approximation that the frequency is inversely proportional to the wavelength (giving a constant speed of sound) is good for low-energy phonons but not for high-energy phonons (see the article on phonons.) This is one of the limitations of the Debye model, and corresponds to incorrectness of the results at intermediate temperatures, whereas both at low temperatures and also at high temperatures they are exact.
Let's now compute the total energy in the box,
where
Now, this is where Debye model and Planck's law of black body radiation differ. Unlike electromagnetic radiation in a box, there is a finite number of phonon energy states because a phonon cannot have infinite frequency. Its frequency is bound by the medium of its propagation—the atomic lattice of the solid. Consider an illustration of a transverse phonon below.
It is reasonable to assume that the minimum wavelength of a phonon is twice the atom separation, as shown in the lower figure. There are
making the maximum mode number
This is the upper limit of the triple energy sum
For slowly varying, well-behaved functions, a sum can be replaced with an integral (also known as Thomas-Fermi approximation)
So far, there has been no mention of
Because a phonon has three possible polarization states (one longitudinal, and two transverse which approximately do not affect its energy) the formula above must be multiplied by 3,
(Actually one uses an effective sonic velocity
Substituting this into the energy integral yields
The ease with which these integrals are evaluated for photons is due to the fact that light's frequency, at least semi-classically, is unbound. As the figure above illustrates, this is not true for phonons. In order to approximate this triple integral, Debye used spherical coordinates
and boldly approximated the cube by an eighth of a sphere
where
so we get:
The substitution of integration over a sphere for the correct integral introduces another source of inaccuracy into the model.
The energy integral becomes
Changing the integration variable to
To simplify the appearance of this expression, define the Debye temperature
Many references describe the Debye temperature as merely shorthand for some constants and material-dependent variables. However, as shown below,
Continuing, we then have the specific internal energy:
where
Differentiating with respect to
These formulae treat the Debye model at all temperatures. The more elementary formulae given further down give the asymptotic behavior in the limit of low and high temperatures. As already mentioned, this behaviour is exact, in contrast to the intermediate behaviour. The essential reason for the exactness at low and high energies, respectively, is that the Debye model gives (i) the exact dispersion relation
Debye's derivation
Actually, Debye derived his equation somewhat differently and more simply. Using the solid mechanics of a continuous medium, he found that the number of vibrational states with a frequency less than a particular value was asymptotic to
in which
if the vibrational frequencies continued to infinity. This form gives the
Debye knew that this assumption was not really correct (the higher frequencies are more closely spaced than assumed), but it guarantees the proper behavior at high temperature (the Dulong–Petit law). The energy is then given by:
where
Another derivation
First we derive the vibrational frequency distribution; the following derivation is based on Appendix VI from. Consider a three-dimensional isotropic elastic solid with N atoms in the shape of a rectangular parallelepiped with side-lengths
Solutions to the wave equation are
and with the boundary conditions
where
The above equation, for fixed frequency
where
Following the derivation from, we define an upper limit to the frequency of vibration
.
By defining
;
this definition is more standard. We can find the energy contribution for all oscillators oscillating at frequency
The energy contribution for oscillators with frequency
.
By noting that
From above, we can get an expression for 1/A; substituting this into (6), we have
Integrating with respect to ν yields
Low temperature limit
The temperature of a Debye solid is said to be low if
This definite integral can be evaluated exactly:
In the low temperature limit, the limitations of the Debye model mentioned above do not apply, and it gives a correct relationship between (phononic) heat capacity, temperature, the elastic coefficients, and the volume per atom (the latter quantities being contained in the Debye temperature).
High-temperature limit
The temperature of a Debye solid is said to be high if
This is the Dulong–Petit law, and is fairly accurate although it does not take into account anharmonicity, which causes the heat capacity to rise further. The total heat capacity of the solid, if it is a conductor or semiconductor, may also contain a non-negligible contribution from the electrons.
Debye versus Einstein
So how closely do the Debye and Einstein models correspond to experiment? Surprisingly close, but Debye is correct at low temperatures whereas Einstein is not.
How different are the models? To answer that question one would naturally plot the two on the same set of axes... except one can't. Both the Einstein model and the Debye model provide a functional form for the heat capacity. They are models, and no model is without a scale. A scale relates the model to its real-world counterpart. One can see that the scale of the Einstein model, which is given by
is
which means that plotting them on the same set of axes makes no sense. They are two models of the same thing, but of different scales. If one defines Einstein temperature as
then one can say
and, to relate the two, we must seek the ratio
The Einstein solid is composed of single-frequency quantum harmonic oscillators,
which makes the Einstein temperature
and the sought ratio is therefore
Now both models can be plotted on the same graph. Note that this ratio is the cube root of the ratio of the volume of one octant of a 3-dimensional sphere to the volume of the cube that contains it, which is just the correction factor used by Debye when approximating the energy integral above.
Alternately the ratio of the 2 temperatures can be seen to be the ratio of Einstein's single frequency at which all oscillators oscillate and Debye's maximum frequency. Einstein's single frequency can then be seen to be a mean of the frequencies available to the Debye model.
Debye temperature table
Even though the Debye model is not completely correct, it gives a good approximation for the low temperature heat capacity of insulating, crystalline solids where other contributions (such as highly mobile conduction electrons) are negligible. For metals, the electron contribution to the heat is proportional to
The Debye model's fit to experimental data is often phenomenologically improved by allowing the Debye temperature to become temperature dependent; for example, the value for water ice increases from about 222 K to 300 K as the temperature goes from Absolute zero to about 100 K.
Extension to other quasi-particles
For other bosonic quasi-particles, e.g., for magnons (quantized spin waves) in ferromagnets instead of the phonons (quantized sound waves) one easily derives analogous results. In this case at low frequencies one has different dispersion relations, e.g.,
Extension to liquids
It was long thought that phonon theory is not able to explain the heat capacity of liquids, since liquids only sustain longitudinal, but not transverse phonons, which in solids are responsible for 2/3 of the heat capacity. However, Brillouin scattering experiments with neutrons and with X-rays, confirming an intuition of Yakov Frenkel, have shown that transverse phonons do exist in liquids, albeit restricted to frequencies above a threshold called the Frenkel frequency. Since most energy is contained in these high-frequency modes, a simple modification of the Debye model is sufficient to yield a good approximation to experimental heat capacities of simple liquids.