Girish Mahajan (Editor)

Cryogenic energy storage

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

Cryogenic energy storage (CES) is the use of low temperature (cryogenic) liquids such as liquid air or liquid nitrogen as energy storage. Both cryogens have been used to power cars. The inventor Peter Dearman initially developed a liquid air car, and then used the technology he developed for grid energy storage. The technology is being piloted at a UK power station.

Contents

History

A liquid air powered car called Liquid Air was built between 1899 and 1902 but it couldn't at the time compete in terms of efficiency with other engines. More recently, a liquid nitrogen vehicle was built. Peter Dearman, a garage inventor in Hertfordshire, UK who had initially developed a liquid air powered car, then put the technology to use as grid energy storage. The Dearman engine differs from former nitrogen engine designs in that the nitrogen is heated by combining it with the heat exchange fluid inside the cylinder of the engine.

Process

When it is cheaper (usually at night), electricity is used to cool air from the atmosphere to -195 °C using the Claude Cycle to the point where it liquefies. The liquid air, which takes up one-thousandth of the volume of the gas, can be kept for a long time in a large vacuum flask at atmospheric pressure. At times of high demand for electricity, the liquid air is pumped at high pressure into a heat exchanger, which acts as a boiler. Air from the atmosphere at ambient temperature, or hot water from an industrial heat source, is used to heat the liquid and turn it back into a gas. The massive increase in volume and pressure from this is used to drive a turbine to generate electricity.

Efficiency

In isolation the process is only 25% efficient, but this is greatly increased (to around 50%) when used with a low-grade cold store, such as a large gravel bed, to capture the cold generated by evaporating the cryogen. The cold is re-used during the next refrigeration cycle.

Efficiency is further increased when used in conjunction with a power plant or other source of low-grade heat that would otherwise be lost to the atmosphere. Highview Power Storage claims an AC to AC round-trip efficiency of 70%, by using an otherwise waste heat source at 115 °C. The IMechE (Institution of Mechanical Engineers) agrees that these estimates for a commercial-scale plant are realistic. However this number was not checked or confirmed by independent professional institutions.

Currently surplus gaseous nitrogen is produced as a byproduct in the production of oxygen. Oxygen can be used in oxy-combustion coal power plants, enabling CO2 capture and sequestration. This gaseous nitrogen can be liquefied by available liquefaction capacities for further use. Cryogenic distillation of air is currently the only commercially viable technology for large scale oxygen production.

Pilot plant

A 300 kW, 2.5MWh storage capacity pilot cryogenic energy system developed by researchers at the University of Leeds and Highview Power Storage, that uses liquid air (with the CO2 and water removed as they would turn solid at the storage temperature) as the energy store, and low-grade waste heat to boost the thermal re-expansion of the air, operated at a 80MW biomass power station in Slough, UK, from 2010 until 2014 when it was relocated to the university of Birmingham . the efficiency is less than 15% because of low efficiency hardware components used, but the engineers are targeting an efficiency of about 60 percent for the next generation of CES based on operation experiences of this system.

The system is based on proven technology, used safely in many industrial processes, and does not require any particularly rare elements or expensive components to manufacture. Dr Tim Fox, the head of Energy at the IMechE says "it uses standard industrial components...., it will last for decades, and it can be fixed with a spanner."

In April 2014 the UK government announced it had given them £8 million to fund the next stage of the demonstration

References

Cryogenic energy storage Wikipedia