Harman Patil (Editor)

Comparison of multi paradigm programming languages

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

Programming languages can be grouped by the number and types of paradigms supported.

Contents

Criticism

Some programming language researchers criticise the notion of paradigms as a classification of programming languages, e.g. Krishnamurthi. They argue that many programming languages cannot be strictly classified into one paradigm, but rather include features from several paradigms. This is clearly demonstrated in the table below. (Which is silent on the level of support of different 'paradigms'.)

Paradigm summaries

A concise reference for the programming paradigms listed in this article.

  • Concurrent programming – have language constructs for concurrency, these may involve multi-threading, support for distributed computing, message passing, shared resources (including shared memory), or futures
  • Actor programming – concurrent computation with actors that make local decisions in response to the environment (capable of selfish or competitive behavior)
  • Constraint programming – relations between variables are expressed as constraints (or constraint networks), directing allowable solutions (uses constraint satisfaction or simplex algorithm)
  • Dataflow programming – forced recalculation of formulas when data values change (e.g. spreadsheets)
  • Declarative programming – describes actions (e.g. HTML describes a page but not how to actually display it)
  • Distributed programming – have support for multiple autonomous computers that communicate via computer networks
  • Functional programming – uses evaluation of mathematical functions and avoids state and mutable data
  • Generic programming – uses algorithms written in terms of to-be-specified-later types that are then instantiated as needed for specific types provided as parameters
  • Imperative programming – explicit statements that change a program state
  • Logic programming – uses explicit mathematical logic for programming
  • Metaprogramming – writing programs that write or manipulate other programs (or themselves) as their data, or that do part of the work at compile time that would otherwise be done at runtime
  • Template metaprogramming – metaprogramming methods in which templates are used by a compiler to generate temporary source code, which is merged by the compiler with the rest of the source code and then compiled
  • Reflective programming – metaprogramming methods in which a program modifies or extends itself
  • Object-oriented programming – uses data structures consisting of data fields and methods together with their interactions (objects) to design programs
  • Class-based – object-oriented programming in which inheritance is achieved by defining classes of objects, versus the objects themselves
  • Prototype-based – object-oriented programming that avoids classes and implements inheritance via cloning of instances
  • Pipeline programming – a simple syntax change to add syntax to nest function calls to language originally designed with none
  • Rule-based programming – a network of rules of thumb that comprise a knowledge base and can be used for expert systems and problem deduction & resolution
  • Visual programming – manipulating program elements graphically rather than by specifying them textually (e.g. Simulink); also termed diagrammatic programming
  • References

    Comparison of multi-paradigm programming languages Wikipedia