Neha Patil (Editor)

Comet Encke

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Discovery date
  
17 January 1786

Eccentricity
  
0.8471

Discovered
  
17 January 1786

Orbits
  
Sun

Aphelion
  
4.11 AU

Orbital period
  
1,204 days

Semimajor axis
  
2.22 m

Last perihelion
  
21 November 2013

Comet Encke Comet Encke Wikipedia

Discovered by
  
Pierre Méchain; Johann Franz Encke (recognition of periodicity)

Alternative designations
  
1786 I; 1795; 1805; 1819 I; 1822 II; 1825 III; 1829; 1832 I; 1835 II; 1838; 1842 I; 1845 IV

Epoch
  
September 22, 2006 (JD 2454000.5)

Discoverers
  
Caroline Herschel, Jean-Louis Pons, Johann Franz Encke, Pierre Méchain

Similar
  
Sun, Solar System, Comet ISON, Comet Kohoutek, Comet Hyakutake

The appearance of comet encke


Comet Encke or Encke's Comet (official designation: 2P/Encke) is a periodic comet that completes an orbit of the Sun once every 3.3 years. (This is the shortest period of a reasonably bright comet; the faint main-belt comet 311P/PANSTARRS has a period of 3.2 years.) Encke was first recorded by Pierre Méchain in 1786, but it was not recognized as a periodic comet until 1819 when its orbit was computed by Johann Franz Encke; like Halley's Comet, it is unusual in being named after the calculator of its orbit rather than its discoverer. Like most comets, it has a very low albedo, reflecting only 4.6% of the light it receives. The diameter of the nucleus of Encke's Comet is 4.8 km.

Contents

Comet Encke How to See This Season39s quotOtherquot Comet 2PEncke Universe Today

Discovery

Comet Encke APOD 2003 December 23 Comet Encke Returns

As its official designation implies, Encke's Comet was the first periodic comet discovered after Halley's Comet (designated 1P/Halley). It was independently observed by several astronomers, the second being Caroline Herschel in 1795 and the third Jean-Louis Pons in 1818. Its orbit was calculated by Johann Franz Encke, who through laborious calculations was able to link observations of comets in 1786 (designated 2P/1786 B1), 1795 (2P/1795 V1), 1805 (2P/1805 U1) and 1818 (2P/1818 W1) to the same object. In 1819 he published his conclusions in the journal Correspondance astronomique, and predicted correctly its return in 1822 (2P/1822 L1). It was recovered by Carl Ludwig Christian Rümker at Parramatta Observatory on 2 June 1822.

Orbit

Comet Encke httpsuploadwikimediaorgwikipediacommonsthu

Comets are in unstable orbits that evolve over time due to perturbations and outgassing. Given Encke's low orbital inclination near the ecliptic and brief orbital period of 3 years, the orbit of Encke is frequently perturbed by the inner planets.

Comet Encke Comet Encke Fall of a Thousand Suns

Encke's orbit gets as close as 0.17309 AU (25,894,000 km; 16,090,000 mi) to Earth (minimum orbit intersection distance). On 4 July 1997, Encke passed 0.19 AU from Earth, and on June 29, 2172 it will make a close approach of roughly 0.1735 AU. On 18 November 2013, it passed 0.02496 AU (3,734,000 km; 2,320,000 mi) from Mercury. Close approaches to Earth usually occur every 33 years.

Observations

The failed CONTOUR mission was launched to study this comet, and also Schwassmann-Wachmann 3.

On April 20, 2007, STEREO-A observed the tail of Comet Encke to be temporarily torn off by magnetic field disturbances caused by a coronal mass ejection (a blast of solar particles from the Sun). The tail grew back due to the continuous shedding of dust and gas by the comet.

Meteor showers

Comet Encke is believed to be the originator of several related meteor showers known as the Taurids (which are encountered as the Northern and Southern Taurids across November, and the Beta Taurids in late June and early July). A shower has similarly been reported affecting Mercury.

Near-Earth object 2004 TG10 may be a fragment of Encke.

Mercury

Measurements on board the NASA satellite MESSENGER have revealed Encke may contribute to seasonal meteor showers on Mercury. The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) instrument discovered seasonal surges of calcium since the probe began orbiting the planet in March 2011. The spikes in calcium levels are thought to originate from small dust particles hitting the planet and knocking calcium-bearing molecules into the atmosphere in a process called impact vaporization. However, the general background of interplanetary dust in the inner Solar System cannot, by itself, account for the periodic spikes in calcium. This suggests a periodic source of additional dust, for example, a cometary debris field.

Effects on Earth

More than one theory has associated Encke's Comet with impacts of cometary material on Earth, and with cultural significance.

The Tunguska event of 1908, probably caused by the impact of a cometary body, has also been postulated by Czechoslovakian astronomer Ľubor Kresák as a fragment of Comet Encke.

A theory holds that the ancient symbol of the swastika appeared in a variety of cultures across the world at a similar time, and could have been inspired by the appearance of a comet from head on, as the curved jets would be reminiscent of the swastika shape (see Comets and the swastika motif). Comet Encke has sometimes been identified as the comet in question. In their 1982 book Cosmic Serpent (page 155) Victor Clube and Bill Napier reproduce an ancient Chinese catalogue of cometary shapes from the Mawangdui Silk Texts, which includes a swastika-shaped comet, and suggest that some comet drawings were related to the breakup of the progenitor of Encke and the Taurid meteoroid stream. Fred Whipple in his The Mystery of Comets (1985, page 163) points out that Comet Encke's polar axis is only 5 degrees from its orbital plane: such an orientation is ideal to have presented a pinwheel like aspect to our ancestors when Encke was more active.

Importance in the scientific history of luminiferous aether

Comet Encke (and Biela's Comet) had a role in scientific history in the generally discredited concept of luminiferous aether. As its orbit was perturbed and shortened, the shortening could only be ascribed to the drag of an "ether" through which it orbited in outer space. One reference, [1], reads:

Encke's comet is found to lose about two days in each successive period of 1200 days. Biela's comet, with twice that length of period, loses about one day. That is, the successive returns of these bodies is found to be accelerated by this amount. No other cause for this irregularity has been found but the agency of the supposed ether.

Encke's pole tumbles in an 81-year period, therefore it will accelerate for half that time, and decelerate for the other half of the time, (since the orientation of the comets rotation to solar heating determines how its orbit changes due to outgassing forward or aft of the comets course). The authors of this 1860 textbook of course could not know that the pole of the comet would tumble as it does over such a long period of time, or that outgassing would induce a thrust to change its course.

References

Comet Encke Wikipedia