Harman Patil (Editor)

Cellodextrin

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

Cellodextrins are glucose polymers of varying length (two or more glucose monomers) resulting from cellulolysis, the breakdown of cellulose.

Contents

Classification

A cellodextrin is classified by its degree of polymerization (DP) which indicates the number of linked glucose monomers it contains. Each glucose monomer is linked via a beta-1,4 glycosidic bond. The most common cellodextrins are listed below:

  • cellobiose (DP=2) (sometimes not included in cellodextrin classification)
  • cellotriose (DP=3)
  • cellotetraose (DP=4)
  • cellopentaose (DP=5)
  • cellohexaose (DP=6)
  • Function

    Cellodextrins are created through the cleavage of cellulose in most anaerobic bacteria by the cellulosome (an amalgamation of cellulolytic enzymes on the outside of a cell). An endoglucanase first cuts the crystalline cellulose in an amorphous zone and exoglucanases subsequently cleave these large insoluble chunks of cellulose into smaller, soluble cellodextrins which can be used by the cell.

    Many cellulolytic bacteria use cellodextrins as their primary source of energy. The energy is obtained through the phosphorolytic cleavage of glycosidic bonds as well as the anaerobic glycolysis of the glucose monomers. Transport of cellodextrins across the cell membrane is usually an active process, requiring ATP.

    References

    Cellodextrin Wikipedia


    Similar Topics