Neha Patil (Editor)

Carbon tetrachloride

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Appearance
  
colourless liquid

IUPAC ID
  
Tetrachloromethane

Molar mass
  
153.82 g/mol

Melting point
  
-22.92 °C

Formula
  
CCl4

Density
  
1.59 g/cm³

Boiling point
  
76.72 °C

Carbon tetrachloride Carbon tetrachloride Simple English Wikipedia the free encyclopedia

Related chloromethanes
  
ChloromethaneDichloromethaneChloroform

Related compounds
  
TetrafluoromethaneTetrabromomethaneTetraiodomethane

Thermodynamicdata
  
Phase behavioursolid–liquid–gas

Soluble in
  
Carbon disulfide, Ether, Formic acid, Benzene, Alcohol, Chloroform

Carbon tetrachloride, also known by many other names (the most notable being tetrachloromethane, also recognized by the IUPAC, carbon tet in the cleaning industry, Halon-104 in firefighting and Refrigerant-10 in HVACR, is an organic compound with the chemical formula CCl4. It was formerly widely used in fire extinguishers, as a precursor to refrigerants and as a cleaning agent. It is a colourless liquid with a "sweet" smell that can be detected at low levels. It has practically no flammability at lower temperatures.

Contents

Carbon tetrachloride FileCarbon tetrachloride flatsvg Wikimedia Commons

Lewis dot structure of ccl4 carbon tetrachloride


History and synthesis

Carbon tetrachloride Carbon tetrachloride EMPLURA 500ml MERCK

Carbon tetrachloride was originally synthesized by the French chemist Henri Victor Regnault in 1839 by the reaction of chloroform with chlorine, but now it is mainly produced from methane:

CH4 + 4 Cl2 → CCl4 + 4 HCl
Carbon tetrachloride Carbon Tetrachloride Suppliers Manufacturers amp Dealers in Kolkata

The production often utilizes by-products of other chlorination reactions, such as from the syntheses of dichloromethane and chloroform. Higher chlorocarbons are also subjected to "chlorinolysis":

C2Cl6 + Cl2 → 2 CCl4

Prior to the 1950s, carbon tetrachloride was manufactured by the chlorination of carbon disulfide at 105 to 130 °C:

CS2 + 3Cl2 → CCl4 + S2Cl2
Carbon tetrachloride Carboncarbon tetrachloride WebElements Periodic Table

The production of carbon tetrachloride has steeply declined since the 1980s due to environmental concerns and the decreased demand for CFCs, which were derived from carbon tetrachloride. In 1992, production in the U.S./Europe/Japan was estimated at 720,000 tonnes.

Properties

Carbon tetrachloride Illustrated Glossary of Organic Chemistry Carbon tetrachloride

In the carbon tetrachloride molecule, four chlorine atoms are positioned symmetrically as corners in a tetrahedral configuration joined to a central carbon atom by single covalent bonds. Because of this symmetrical geometry, CCl4 is non-polar. Methane gas has the same structure, making carbon tetrachloride a halomethane. As a solvent, it is well suited to dissolving other non-polar compounds, fats, and oils. It can also dissolve iodine. It is somewhat volatile, giving off vapors with a smell characteristic of other chlorinated solvents, somewhat similar to the tetrachloroethylene smell reminiscent of dry cleaners' shops.

Solid tetrachloromethane has two polymorphs: crystalline II below −47.5 °C (225.6 K) and crystalline I above −47.5 °C. At −47.3 °C it has monoclinic crystal structure with space group C2/c and lattice constants a = 20.3, b = 11.6, c = 19.9 (.10−1 nm), β = 111°.

With a specific gravity greater than 1, carbon tetrachloride will be present as a dense nonaqueous phase liquid if sufficient quantities are spilled in the environment.

Uses

In organic chemistry, carbon tetrachloride serves as a source of chlorine in the Appel reaction.

Historic uses

Prior to the Montreal Protocol, large quantities of carbon tetrachloride were used to produce the chlorofluorocarbon refrigerants R-11 (trichlorofluoromethane) and R-12 (dichlorodifluoromethane). However, these refrigerants play a role in ozone depletion and have been phased out. Carbon tetrachloride is still used to manufacture less destructive refrigerants. Carbon tetrachloride has also been used in the detection of neutrinos.

Solvent

It once was a popular solvent in organic chemistry, but, because of its adverse health effects, it is rarely used today. It is sometimes useful as a solvent for infrared spectroscopy, because there are no significant absorption bands > 1600 cm−1. Because carbon tetrachloride does not have any hydrogen atoms, it was historically used in proton NMR spectroscopy. In addition to being toxic, its dissolving power is low. Its use has been largely superseded by deuterated solvents. Use of carbon tetrachloride in determination of oil has been replaced by various other solvents, such as tetrachloroethylene. Because it has no C-H bonds, carbon tetrachloride does not easily undergo free-radical reactions. It is a useful solvent for halogenations either by the elemental halogen or by a halogenation reagent such as N-bromosuccinimide (these conditions are known as Wohl-Ziegler Bromination).

Fire suppression

In 1910, the Pyrene Manufacturing Company of Delaware filed a patent to use carbon tetrachloride to extinguish fires. The liquid was vaporized by the heat of combustion and extinguished flames, an early form of gaseous fire suppression. At the time it was believed the gas simply displaced oxygen in the area near the fire, but later research found that the gas actually inhibits the chemical chain reaction of the combustion process.

In 1911, Pyrene patented a small, portable extinguisher that used the chemical. The extinguisher consisted of a brass bottle with an integrated handpump that was used to expel a jet of liquid toward the fire. As the container was unpressurized, it could easily be refilled after use. Carbon tetrachloride was suitable for liquid and electrical fires and the extinguishers were often carried on aircraft or motor vehicles.

In the first half of the 20th century, another common fire extinguisher was a single-use, sealed glass globe known as a "fire grenade," filled with either carbon tetrachloride or salt water. The bulb could be thrown at the base of the flames to quench the fire. The carbon tetrachloride type could also be installed in a spring-loaded wall fixture with a solder-based restraint. When the solder melted by high heat, the spring would either break the globe or launch it out of the bracket, allowing the extinguishing agent to be automatically dispersed into the fire. A well-known brand was the "Red Comet," which was variously manufactured with other fire-fighting equipment in the Denver, Colorado area by the Red Comet Manufacturing Company from its founding in 1919 until manufacturing operations were closed in the early 1980s.

Niche

Carbon tetrachloride was widely used as a dry cleaning solvent, as a refrigerant, and in lava lamps.

One specialty use of carbon tetrachloride was in stamp collecting, to reveal watermarks on postage stamps without damaging them. A small amount of the liquid was placed on the back of a stamp, sitting in a black glass or obsidian tray. The letters or design of the watermark could then be clearly seen.

Safety

Carbon tetrachloride is one of the most potent hepatotoxins (toxic to the liver), so much so that it is widely used in scientific research to evaluate hepatoprotective agents.Exposure to high concentrations of carbon tetrachloride (including vapor) can affect the central nervous system, degenerate the liver and kidneys, and prolonged exposure may lead to coma or death. Chronic exposure to carbon tetrachloride can cause liver and kidney damage and could result in cancer. See safety data sheets.

The effects of carbon tetrachloride on human health and the environment have been assessed under REACH in 2012 in the context of the substance evaluation by France. Thereafter, further information has been requested from the registrants. Later this decision was reversed.

In 2008, a study of common cleaning products found the presence of carbon tetrachloride in "very high concentrations" (up to 101 mg/m3) as a result of manufacturers' mixing of surfactants or soap with sodium hypochlorite (bleach).

Like many other volatile substances, carbon tetrachloride is prone to misuse by inhalation, due to its possible depressant and/or dissociative effect upon the central nervous system. Use of carbon tetrachloride in this manner presents serious health risks, and may result in toxic effects described above.

Carbon tetrachloride is also both ozone-depleting and a greenhouse gas. However, since 1992 its atmospheric concentrations have been in decline for the reasons described above (see also the atmospheric time-series figure). CCl4 has an atmospheric lifetime of 85 years.

Under high temperatures in air, it forms poisonous phosgene.

References

Carbon tetrachloride Wikipedia