In quantum mechanics, the Byers-Yang theorem states that all physical properties of a doubly connected system (an annulus) enclosing a magnetic flux 
  
    
      
        Φ
      
    
    
   through the opening are periodic in the flux with period 
  
    
      
        
          Φ
          
            0
          
        
        =
        h
        
          /
        
        e
      
    
    
   (the magnetic flux quantum). The theorem was first stated and proven by Nina Byers and Chen-Ning Yang (1961), and further developed by Felix Bloch (1970).
An enclosed flux 
  
    
      
        Φ
      
    
    
   corresponds to a vector potential 
  
    
      
        A
        (
        r
        )
      
    
    
   inside the annulus with a line integral 
  
    
      
        
          ∮
          
            C
          
        
        A
        ⋅
        d
        l
        =
        Φ
      
    
    
   along any path 
  
    
      
        C
      
    
    
   that circulates around once. One can try to eliminate this vector potential by the gauge transformation
  
    
      
        
          ψ
          ′
        
        (
        {
        
          r
          
            n
          
        
        }
        )
        =
        exp
        
        
          (
          
            
              
                i
                e
              
              ℏ
            
          
          
            ∑
            
              j
            
          
          χ
          (
          
            r
            
              j
            
          
          )
          )
        
        ψ
        (
        {
        
          r
          
            n
          
        
        }
        )
      
    
    
  
of the wave function 
  
    
      
        ψ
        (
        {
        
          r
          
            n
          
        
        }
        )
      
    
    
   of electrons at positions 
  
    
      
        
          r
          
            1
          
        
        ,
        
          r
          
            2
          
        
        ,
        …
      
    
    
  . The gauge-transformed wave function satisfies the same Schrödinger equation as the original wave function, but with a different magnetic vector potential 
  
    
      
        
          A
          ′
        
        (
        r
        )
        =
        A
        (
        r
        )
        +
        ∇
        χ
        (
        r
        )
      
    
    
  . It is assumed that the electrons experience zero magnetic field 
  
    
      
        B
        (
        r
        )
        =
        ∇
        ×
        A
        (
        r
        )
        =
        0
      
    
    
   at all points 
  
    
      
        r
      
    
    
   inside the annulus, the field being nonzero only within the opening (where there are no electrons). It is then always possible to find a function 
  
    
      
        χ
        (
        r
        )
      
    
    
   such that 
  
    
      
        
          A
          ′
        
        (
        r
        )
        =
        0
      
    
    
   inside the annulus, so one would conclude that the system with enclosed flux 
  
    
      
        Φ
      
    
    
   is equivalent to a system with zero enclosed flux.
However, for any arbitrary 
  
    
      
        Φ
      
    
    
   the gauge transformed wave function is no longer single-valued: The phase of 
  
    
      
        
          ψ
          ′
        
      
    
    
   changes by
  
    
      
        δ
        ϕ
        =
        (
        e
        
          /
        
        ℏ
        )
        
          ∮
          
            C
          
        
        ∇
        χ
        (
        r
        )
        ⋅
        d
        l
        =
        2
        π
        Φ
        
          /
        
        
          Φ
          
            0
          
        
      
    
    
  
whenever one of the coordinates 
  
    
      
        
          r
          
            n
          
        
      
    
    
   is moved along the ring to its starting point. The requirement of a single-valued wave function therefore restricts the gauge transformation to fluxes 
  
    
      
        Φ
      
    
    
   that are an integer multiple of 
  
    
      
        
          Φ
          
            0
          
        
      
    
    
  . Systems that enclose a flux differing by a multiple of 
  
    
      
        h
        
          /
        
        e
      
    
    
   are equivalent.
An overview of physical effects governed by the Byers-Yang theorem is given by Yoseph Imry. These include the Aharonov-Bohm effect, persistent current in normal metals, and flux quantization in superconductors.