Trisha Shetty (Editor)

B4 polytope

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
B4 polytope

In 4-dimensional geometry, there are 15 uniform 4-polytopes with B4 symmetry. There are two regular forms, the tesseract, and 16-cell with 16 and 8 vertices respectively.

Contents

Visualizations

They can be visualized as symmetric orthographic projections in Coxeter planes of the B5 Coxeter group, and other subgroups.

Symmetric orthographic projections of these 32 polytopes can be made in the B5, B4, B3, B2, A3, Coxeter planes. Ak has [k+1] symmetry, and Bk has [2k] symmetry.

These 32 polytopes are each shown in these 5 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.

The pictures are drawn as Schlegel diagram perspective projections, centered on the cell at pos. 3, with a consistent orientation, and the 16 cells at position 0 are shown solid, alternately colored.

Coordinates

The tesseractic family of 4-polytopes are given by the convex hulls of the base points listed in the following table, with all permutations of coordinates and sign taken. Each base point generates a distinct uniform 4-polytopes. All coordinates correspond with uniform 4-polytopes of edge length 2.

References

B4 polytope Wikipedia