![]() | ||
Determining the length of an irregular arc segment is also called rectification of a curve. Historically, many methods were used for specific curves. The advent of infinitesimal calculus led to a general formula that provides closed-form solutions in some cases.
Contents
- General approach
- Definition for a smooth curve
- Finding arc lengths by integrating
- Numerical integration
- Curve on a surface
- Other coordinate systems
- Arcs of circles
- Arcs of great circles on the Earth
- Antiquity
- 17th century
- Integral form
- Curves with infinite length
- Generalization to pseudo Riemannian manifolds
- References
General approach
A curve in the plane can be approximated by connecting a finite number of points on the curve using line segments to create a polygonal path. Since it is straightforward to calculate the length of each linear segment (using the Pythagorean theorem in Euclidean space, for example), the total length of the approximation can be found by summing the lengths of each linear segment; that approximation is known as the (cumulative) chordal distance.
If the curve is not already a polygonal path, using a progressively larger number of segments of smaller lengths will result in better approximations. The lengths of the successive approximations will not decrease and may keep increasing indefinitely, but for smooth curves they will tend to a finite limit as the lengths of the segments get arbitrarily small.
For some curves there is a smallest number
Definition for a smooth curve
Let
where
The last equality above is true because the definition of the derivative as a limit implies that there is a positive real function
has absolute value less than
The definition of arc length of a smooth curve as the integral of the norm of the derivative is equivalent to the definition
where the supremum is taken over all possible partitions
A curve can be parameterized in infinitely many ways. Let
Finding arc lengths by integrating
If a planar curve in
Curves with closed-form solutions for arc length include the catenary, circle, cycloid, logarithmic spiral, parabola, semicubical parabola and straight line. The lack of a closed form solution for the arc length of an elliptic arc led to the development of the elliptic integrals.
Numerical integration
In most cases, including even simple curves, there are no closed-form solutions for arc length and numerical integration is necessary. Numerical integration of the arc length integral is usually very efficient. For example, consider the problem of finding the length of a quarter of the unit circle by numerically integrating the arc length integral. The upper half of the unit circle can be parameterized as
The 15-point Gauss-Kronrod rule estimate for this integral of 1.570796326808177 differs from the true length of
Curve on a surface
Let
The squared norm of this vector is
Other coordinate systems
Let
The integrand of the arc length integral is
So for a curve expressed in polar coordinates, the arc length is
Now let
Using the chain rule again shows that
So for a curve expressed in spherical coordinates, the arc length is
A very similar calculation shows that the arc length of a curve expressed in cylindrical coordinates is
Arcs of circles
Arc lengths are denoted by s, since the Latin word for length (or size) is spatium.
In the following lines,
Arcs of great circles on the Earth
Two units of length, the nautical mile and the metre (or kilometre), were originally defined so the lengths of arcs of great circles on the Earth's surface would be simply numerically related to the angles they subtend at its centre. The simple equation
The lengths of the distance units were chosen to make the circumference of the Earth equal 40,000 kilometres, or 21,600 nautical miles. These are the numbers of the corresponding angle units in one complete turn.
These definitions of the metre and nautical mile have been superseded by more precise ones, but the original definitions are still accurate enough for conceptual purposes, and for some calculations. For example, they imply that one kilometre is exactly 0.54 nautical miles. Using official modern definitions, one nautical mile is exactly 1.852 kilometres, which implies that 1 kilometre ≈ 0.53995680 nautical miles. This modern ratio differs from the one calculated from the original definitions by less than one part in ten thousand.
Antiquity
For much of the history of mathematics, even the greatest thinkers considered it impossible to compute the length of an irregular arc. Although Archimedes had pioneered a way of finding the area beneath a curve with his "method of exhaustion", few believed it was even possible for curves to have definite lengths, as do straight lines. The first ground was broken in this field, as it often has been in calculus, by approximation. People began to inscribe polygons within the curves and compute the length of the sides for a somewhat accurate measurement of the length. By using more segments, and by decreasing the length of each segment, they were able to obtain a more and more accurate approximation. In particular, by inscribing a polygon of many sides in a circle, they were able to find approximate values of π.
17th century
In the 17th century, the method of exhaustion led to the rectification by geometrical methods of several transcendental curves: the logarithmic spiral by Evangelista Torricelli in 1645 (some sources say John Wallis in the 1650s), the cycloid by Christopher Wren in 1658, and the catenary by Gottfried Leibniz in 1691.
In 1659, Wallis credited William Neile's discovery of the first rectification of a nontrivial algebraic curve, the semicubical parabola.
Integral form
Before the full formal development of calculus, the basis for the modern integral form for arc length was independently discovered by Hendrik van Heuraet and Pierre de Fermat.
In 1659 van Heuraet published a construction showing that the problem of determining arc length could be transformed into the problem of determining the area under a curve (i.e., an integral). As an example of his method, he determined the arc length of a semicubical parabola, which required finding the area under a parabola. In 1660, Fermat published a more general theory containing the same result in his De linearum curvarum cum lineis rectis comparatione dissertatio geometrica (Geometric dissertation on curved lines in comparison with straight lines).
Building on his previous work with tangents, Fermat used the curve
whose tangent at x = a had a slope of
so the tangent line would have the equation
Next, he increased a by a small amount to a + ε, making segment AC a relatively good approximation for the length of the curve from A to D. To find the length of the segment AC, he used the Pythagorean theorem:
which, when solved, yields
In order to approximate the length, Fermat would sum up a sequence of short segments.
Curves with infinite length
As mentioned above, some curves are non-rectifiable. That is, there is no upper bound on the lengths of polygonal approximations; the length can be made arbitrarily large. Informally, such curves are said to have infinite length. There are continuous curves on which every arc (other than a single-point arc) has infinite length. An example of such a curve is the Koch curve. Another example of a curve with infinite length is the graph of the function defined by f(x) = x sin(1/x) for any open set with 0 as one of its delimiters and f(0) = 0. Sometimes the Hausdorff dimension and Hausdorff measure are used to quantify the size of such curves.
Generalization to (pseudo-)Riemannian manifolds
Let
The length of
where
In theory of relativity, arc length of timelike curves (world lines) is the proper time elapsed along the world line, and arc length of a spacelike curve the proper distance along the curve.