![]() | ||
Parameters λ > 0 {\displaystyle \lambda >0} Support 0 ≤ θ < 2 π {\displaystyle 0\leq \theta <2\pi } PDF λ e − λ θ 1 − e − 2 π λ {\displaystyle {\frac {\lambda e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}}} CDF 1 − e − λ θ 1 − e − 2 π λ {\displaystyle {\frac {1-e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}}} Mean arctan ( 1 / λ ) {\displaystyle \arctan(1/\lambda )} (circular) Variance 1 − λ 1 + λ 2 {\displaystyle 1-{\frac {\lambda }{\sqrt {1+\lambda ^{2}}}}} (circular) |
In probability theory and directional statistics, a wrapped exponential distribution is a wrapped probability distribution that results from the "wrapping" of the exponential distribution around the unit circle.
Contents
Definition
The probability density function of the wrapped exponential distribution is
for
Characteristic function
The characteristic function of the wrapped exponential is just the characteristic function of the exponential function evaluated at integer arguments:
which yields an alternate expression for the wrapped exponential PDF in terms of the circular variable z=e i (θ-m) valid for all real θ and m:
where
Circular moments
In terms of the circular variable
where
The mean angle is
and the length of the mean resultant is
and the variance is then 1-R.
Characterisation
The wrapped exponential distribution is the maximum entropy probability distribution for distributions restricted to the range