Developer(s) University of Waikato Operating system | Written in Java | |
![]() | ||
Stable release 3.8.1 (stable) / April 14, 2016; 11 months ago (2016-04-14) Preview release 3.9.1 / December 19, 2016; 3 months ago (2016-12-19) Repository svn.cms.waikato.ac.nz/svn/weka/ |
Waikato Environment for Knowledge Analysis (Weka) is a suite of machine learning software written in Java, developed at the University of Waikato, New Zealand. It is free software licensed under the GNU General Public License.
Contents
Description
Weka (pronounced to rhyme with Mecca) contains a collection of visualization tools and algorithms for data analysis and predictive modeling, together with graphical user interfaces for easy access to these functions. The original non-Java version of Weka was a Tcl/Tk front-end to (mostly third-party) modeling algorithms implemented in other programming languages, plus data preprocessing utilities in C, and a Makefile-based system for running machine learning experiments. This original version was primarily designed as a tool for analyzing data from agricultural domains, but the more recent fully Java-based version (Weka 3), for which development started in 1997, is now used in many different application areas, in particular for educational purposes and research. Advantages of Weka include:
Weka supports several standard data mining tasks, more specifically, data preprocessing, clustering, classification, regression, visualization, and feature selection. All of Weka's techniques are predicated on the assumption that the data is available as one flat file or relation, where each data point is described by a fixed number of attributes (normally, numeric or nominal attributes, but some other attribute types are also supported). Weka provides access to SQL databases using Java Database Connectivity and can process the result returned by a database query. It is not capable of multi-relational data mining, but there is separate software for converting a collection of linked database tables into a single table that is suitable for processing using Weka. Another important area that is currently not covered by the algorithms included in the Weka distribution is sequence modeling.
User interfaces
Weka's main user interface is the Explorer, but essentially the same functionality can be accessed through the component-based Knowledge Flow interface and from the command line. There is also the Experimenter, which allows the systematic comparison of the predictive performance of Weka's machine learning algorithms on a collection of datasets.
The Explorer interface features several panels providing access to the main components of the workbench:
Extension packages
In version 3.7.2 (thus not available in the stable "book" version of Weka), a package manager was added to allow the easier installation of extension packages. Some functionality that used to be included with Weka prior to this version has since been moved into such extension packages, but this change also makes it easier for other to contribute extensions to Weka and to maintain the software, as this modular architecture allows independent updates of the Weka core and individual extensions.