Rahul Sharma (Editor)

Viking 1

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Mission type
  
orbiter and lander

Launch date
  
20 August 1975

Manufacturer
  
Jet Propulsion Laboratory

Operator
  
NASA

Max speed
  
14,400 km/h

Cost
  
1 billion USD (1970)

Last contact
  
13 November 1982

Viking 1 68mediatumblrcom2cb62daaf89626ece7ea4cbfeb44ad

COSPAR ID
  
Orbiter:1975-075A Lander:1975-075C

SATCAT no.
  
Orbiter:8108 Lander:9024

Website
  
Viking Project Information

Mission duration
  
orbiter:1846 days (1797 sols) lander:2306 days (2245 sol)

Launch mass
  
Orbiter:883 kg (1,947 lb) Lander:572 kg (1,261 lb)

Similar
  
Mars Global Surveyor, Mariner 9, Mars Pathfinder, Spirit, Mariner 4

Viking 1 was the first of two spacecraft (along with Viking 2) sent to Mars as part of NASA's Viking program. On July 20, 1976, it became the first spacecraft to land successfully on Mars and perform its mission. Viking 1 held the record for the longest Mars surface mission of 2307 days or 2245 sols until that record was broken by Opportunity on May 19, 2010.

Contents

Viking 1 Missions Viking 1

Mission

Viking 1 Viking 1 The Historic First Mars Landing in PicturesTrue Viral News

Following launch using a Titan/Centaur launch vehicle on August 20, 1975, and a 10-month cruise to Mars, the orbiter began returning global images of Mars about 5 days before orbit insertion. The Viking 1 Orbiter was inserted into Mars orbit on June 19, 1976, and trimmed to a 1513 x 33,000 km, 24.66 h site certification orbit on June 21. Landing on Mars was planned for July 4, 1976, the United States Bicentennial, but imaging of the primary landing site showed it was too rough for a safe landing. The landing was delayed until a safer site was found, and took place instead on July 20, the seventh anniversary of the Apollo 11 Moon landing. The lander separated from the orbiter at 08:51 UTC and landed at 11:53:06 UTC. It was the first attempt by the United States at landing on Mars.

Orbiter

Viking 1 Viking program Wikipedia

The instruments of the orbiter consisted of two vidicon cameras for imaging (VIS), an infrared spectrometer for water vapor mapping (MAWD) and infrared radiometers for thermal mapping (IRTM). The orbiter primary mission ended at the beginning of solar conjunction on November 5, 1976. The extended mission commenced on December 14, 1976, after solar conjunction. Operations included close approaches to Phobos in February 1977. The periapsis was reduced to 300 km on March 11, 1977. Minor orbit adjustments were done occasionally over the course of the mission, primarily to change the walk rate — the rate at which the areocentric longitude changed with each orbit, and the periapsis was raised to 357 km on July 20, 1979. On August 7, 1980, Viking 1 Orbiter was running low on attitude control gas and its orbit was raised from 357 × 33943 km to 320 × 56000 km to prevent impact with Mars and possible contamination until the year 2019. Operations were terminated on August 17, 1980, after 1485 orbits. A 2009 analysis concluded that, while the possibility that Viking 1 had impacted mars could not be ruled out, it was most likely still in orbit.

Lander

Viking 1 Viking Lander Model

The lander and its aeroshell separated from the orbiter on July 20 at 08:51 UTC. At the time of separation, the lander was orbiting at about 5 kilometres per second (3.1 miles per second). The aeroshell's retrorockets fired to begin the lander de-orbit maneuver. After a few hours at about 300 kilometres (190 miles) altitude, the lander was reoriented for atmospheric entry. The aeroshell with its ablative heat shield slowed the craft as it plunged through the atmosphere. During this time, entry science experiments were performed by using a retarding potential analyzer, a mass spectrometer, as well as pressure, temperature, and density sensors. At 6 km (3.7 mi) altitude, traveling at about 250 metres per second (820 feet per second), the 16 m diameter lander parachutes deployed. Seven seconds later the aeroshell was jettisoned, and 8 seconds after that the three lander legs were extended. In 45 seconds the parachute had slowed the lander to 60 metres per second (200 feet per second). At 1.5 km (0.93 mi) altitude, retrorockets on the lander itself were ignited and, 40 seconds later at about 2.4 m/s (7.9 ft/s), the lander arrived on Mars with a relatively light jolt. The legs had honeycomb aluminum shock absorbers to soften the landing.

Viking 1 Viking 1 Wikipedia

The landing rockets used an 18-nozzle design to spread the hydrogen and nitrogen exhaust over a large area. NASA calculated that this approach would mean that the surface would not be heated by more than one 1°C (1.8°F), and that it would move no more than 1 millimetre (0.039 inches) of surface material. Since most of Viking's experiments focused on the surface material a more straightforward design would not have served.

Viking 1 First Image of Mars NASA

The Viking 1 Lander touched down in western Chryse Planitia ("Golden Plain") at 22.697°N 48.222°W / 22.697; -48.222 at a reference altitude of −2.69 kilometres (−1.67 mi) relative to a reference ellipsoid with an equatorial radius of 3,397 kilometres (2,111 mi) and a flatness of 0.0105 (22.480° N, 47.967° W planetographic) at 11:53:06 UT (16:13 local Mars time). Approximately 22 kilograms (49 lb) of propellants were left at landing.

Viking 1 The Viking 1 Space Probe lands on Mars Life on Mars Growing up

Transmission of the first surface image began 25 seconds after landing and took about 4 minutes (see below). During these minutes the lander activated itself. It erected a high-gain antenna pointed toward Earth for direct communication and deployed a meteorology boom mounted with sensors. In the next 7 minutes the second picture of the 300° panoramic scene (displayed below) was taken. On the day after the landing the first color picture of the surface of Mars (displayed below) was taken. The seismometer failed to uncage, and a sampler arm locking pin was stuck and took five days to shake out. Otherwise, all experiments functioned normally. The lander had two means of returning data to Earth: a relay link up to the orbiter and back, and by using a direct link to Earth. The data capacity of the relay link was about 10 times higher than the direct link.

The lander had two facsimile cameras, three analyses for metabolism, growth or photosyntheses, a gas chromatograph-mass spectrometer (GCMS), an x-ray fluorescence spectrometer, pressure, temperature and wind velocity sensors, a three-axis seismometer, a magnet on a sampler observed by the cameras, and various engineering sensors.

The Viking 1 Lander was named the Thomas Mutch Memorial Station in January 1982 in honor of the leader of the Viking imaging team. The lander operated for 2245 sols (about 2306 Earth days or 6 years) until November 11, 1982, (sol 2600), when a faulty command sent by ground control resulted in loss of contact. The command was intended to uplink new battery charging software to improve the lander's deteriorating battery capacity, but it inadvertently overwrote data used by the antenna pointing software. Attempts to contact the lander during the next four months, based on the presumed antenna position, were unsuccessful. In 2006 the Viking 1 lander was imaged on the Martian surface by the Mars Reconnaissance Orbiter.

Search for life

Viking carried a biology experiment whose purpose was to look for evidence of life. The Viking spacecraft biological experiments weighed 15.5 kg (34 lbs) and consisted of three subsystems: the pyrolytic release experiment (PR), the labeled release experiment (LR), and the gas exchange experiment (GEX). In addition, independent of the biology experiments, Viking carried a gas chromatograph/mass spectrometer (GCMS) that could measure the composition and abundance of organic compounds in the martian soil. The results were surprising and interesting: the GCMS gave a negative result; the PR gave a negative result, the GEX gave a negative result, and the LR gave a positive result. Viking scientist Patricia Straat stated in 2009, "Our (LR) experiment was a definite positive response for life, but a lot of people have claimed that it was a false positive for a variety of reasons." Most scientists now believe that the data were due to inorganic chemical reactions of the soil; however, this view may be changing after the recent discovery of near-surface ice near the Viking landing zone. Some scientists still believe the results were due to living reactions. No organic chemicals were found in the soil. However, dry areas of Antarctica do not have detectable organic compounds either, but they have organisms living in the rocks. Mars has almost no ozone layer, unlike the Earth, so UV light sterilizes the surface and produces highly reactive chemicals such as peroxides that would oxidize any organic chemicals. The Phoenix Lander discovered the chemical perchlorate in the Martian soil. Perchlorate is a strong oxidant so it may have destroyed any organic matter on the surface. If it is widespread on Mars, carbon-based life would be difficult at the soil surface.

Test of general relativity

Gravitational time dilation is a phenomenon predicted by the theory of General Relativity whereby time passes more slowly in regions of lower gravitational potential. Scientists used the lander to test this hypothesis, by sending radio signals to the lander on Mars, and instructing the lander to send back signals, in cases which sometimes included the signal passing close to the Sun. Scientists found that the observed Shapiro delays of the signals matched the predictions of General Relativity.

References

Viking 1 Wikipedia