Girish Mahajan (Editor)

Triheptagonal tiling

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Triheptagonal tiling

In geometry, the triheptagonal tiling is a semiregular tiling of the hyperbolic plane, representing a rectified Order-3 heptagonal tiling. There are two triangles and two heptagons alternating on each vertex. It has Schläfli symbol of r{7,3}.

Compare to trihexagonal tiling with vertex configuration 3.6.3.6.

The triheptagonal tiling can be seen in a sequence of quasiregular polyhedrons and tilings:

From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular heptagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.

References

Triheptagonal tiling Wikipedia


Similar Topics