Kalpana Kalpana (Editor)

Textile manufacturing

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

Textile manufacturing is a major industry. It is based on the conversion of fibre into yarn, yarn into fabric. These are then dyed or printed, fabricated into clothes. Different types of fibre are used to produce yarn. Cotton remains the most important natural fibre, so is treated in depth. There are many variable processes available at the spinning and fabric-forming stages coupled with the complexities of the finishing and colouration processes to the production of a wide ranges of products. There remains a large industry that uses hand techniques to achieve the same results.

Contents

Processing of cotton

Cotton is the world's most important natural fibre. In the year 2007, the global yield was 25 million tons from 35 million hectares cultivated in more than 50 countries.

There are six stages

  • Cultivating and Harvesting
  • Preparatory Processes
  • Spinning
  • Weaving or Knitting
  • Finishing
  • Marketing
  • Cultivating and harvesting

    Cotton is grown anywhere with long, hot dry summers with plenty of sunshine and low humidity. Indian cotton, gossypium arboreum, is finer but the staple is only suitable for hand processing. American cotton, gossypium hirsutum, produces the longer staple needed for machine production. Planting is from September to mid November and the crop is harvested between March and June. The cotton bolls are harvested by stripper harvesters and spindle pickers, that remove the entire boll from the plant. The cotton boll is the seed pod of the cotton plant, attached to each of the thousands of seeds are fibres about 2.5 cm long.

  • Ginning
  • Preparatory processes - preparation of yarn

  • Ginning, bale-making and transportation is done in the country of origin.
  • Opening and cleaning
  • Blending,
  • Scutching refers to the process of cleaning cotton of its seeds and other impurities. The first scutching machine was invented in 1797, but did not come into further mainstream use until after 1808 or 1809, when it was introduced and used in Manchester, England. By 1816, it had become generally adopted. The scutching machine worked by passing the cotton through a pair of rollers, and then striking it with iron or steel bars called beater bars or beaters. The beaters, which turn very quickly, strike the cotton hard and knock the seeds out. This process is done over a series of parallel bars so as to allow the seeds to fall through. At the same time, air is blown across the bars, which carries the cotton into a cotton chamber.

  • Carding
  • Carding: the fibres are separated and then assembled into a loose strand (sliver or tow) at the conclusion of this stage. Note: In a wider sense Carding can refer to these four processes: Willowing- loosening the fibres; Lapping- removing the dust to create a flat sheet or lap of cotton; Carding- combing the tangled lap into a thick rope of 1/2 in in diameter, a sliver; and Drawing- where a drawing frame combines 4 slivers into one- repeated for increased quality.
  • Combing is optional, but is used to remove the shorter fibres, creating a stronger yarn.
  • Drawing the fibres are straightened
  • Spinning - yarn manufacture

  • Spinning
  • Checking.
  • Folding and twisting
  • Gassing
  • Measurements

  • Cotton Counts: Refers to the thickness of the cotton yarn where 840 yards of yarns weighs 1 pound (0.45 kg). 10 count cotton means that 8,400 yards (7,700 m) of yarn weighs 1 pound (0.45 kg). This is coarser than 40 count cotton where 40x840 yards are needed. In the United Kingdom, Counts to 40s are coarse (Oldham Counts), 40 to 80s are medium counts and above 80 is a fine count. In the United States ones to 20s are coarse counts.
  • Hank: A length of 7 leas or 840 yards
  • Thread: A length of 54 in (the circumference of a warp beam)
  • Bundle: Usually 10 lb
  • Lea: A length of 80 threads or 120 yards
  • Denier: this is an alternative method. It is defined as a number that is equivalent to the weight in grams of 9000m of a single yarn. 15 denier is finer than 30 denier.
  • Tex: is the weight in grams of 1 km of yarn.
  • The worsted hank is only 560 yd

    Weaving-fabric manufacture

    The weaving process uses a loom. The lengthway threads are known as the warp, and the cross way threads are known as the weft. The warp which must be strong needs to be presented to loom on a warp beam. The weft passes across the loom in a shuttle, that carries the yarn on a pirn. These pirns are automatically changed by the loom. Thus, the yarn needs to be wrapped onto a beam, and onto pirns before weaving can commence.

  • Winding
  • Warping or beaming
  • Sizing
  • Drawing in, Looming
  • Pirning (Processing the weft)
  • Weaving
  • Measurements

  • Ends and Picks: Picks refer to the weft, ends refer to the warp. The coarseness of the cloth can be expressed as the number of picks and ends per quarter inch square, or per inch square. Ends is always written first. For example: Heavy domestics are made from coarse yarns, such as 10's to 14's warp and weft, and about 48 ends and 52 picks.
  • Associated job titles

  • Piecer
  • Scavenger
  • Weaver
  • Tackler
  • Draw boy
  • Pirner
  • Issues

    When a hand loom was located in the home, children helped with the weaving process from an early age. Piecing needs dexterity, and a child can be as productive as an adult. When weaving moves from the home to the mill, children are often allowed to help their older sisters, and laws have to be made to prevent child labour becoming established.

    Knitting- fabric manufacture

    Knitting by machine is done in two different ways; warp and weft. Weft knitting (as seen in the pictures) is similar in method to hand knitting with stitches all connected to each other horizontally. Various weft machines can be configured to produce textiles from a single spool of yarn or multiple spools depending on the size of the machine cylinder (where the needles are bedded). In a warp knit there are many pieces of yarn and there are vertical chains, zigzagged together by crossing the Cotton yarn.

    Warp knits do not stretch as much as a weft knit, and it is run-resistant. A weft knit is not run-resistant, but stretches more. This is especially true if spools of spandex are processed from separate spool containers and interwoven through the cylinder with cotton yarn, giving the finished product more flexibility and making it less prone to having a 'baggy' appearance. The average t-shirt is a weft knit.

    Finishing- processing of textiles

    The woven cotton fabric in its loom-state not only contains impurities, including warp size, but requires further treatment in order to develop its full textile potential. Furthermore, it may receive considerable added value by applying one or more finishing processes.

  • Desizing
  • Scouring
  • Bleaching
  • Mercerising
  • Singeing
  • Raising
  • Calendering
  • Shrinking (Sanforizing)
  • Dyeing
  • Printing
  • Economic, environmental and political consequences of cotton manufacture

    The growth of cotton is divided into two segments i.e. organic and genetically modified. Cotton crop provides livelihood to millions of people but its production is becoming expensive because of high water consumption, use of expensive pesticides, insecticides and fertiliser. Genetically Modified products aim to increase disease resistance and reduce the water required. The organic sector was worth $583 million. Genetically Modified cotton, in 2007, occupied 43% of cotton growing areas.

    Cotton is farmed intensively and uses large amounts of fertilizer and 25% of the world's insecticides. Native Indian varieties of cotton were rainwater fed, but modern hybrids used for the mills need irrigation, which spreads pests. The 5% of cotton-bearing land in India uses 55% of all pesticides used in India. In United Kingdom some companies design cloths for manufacturers such as Sewport, and Bridge & Stitch.

    The consumption of energy in form of water and electricity is relatively high, especially in processes like washing, de-sizing, bleaching, rinsing, dyeing, printing, coating and finishing. Processing is time consuming. The major portion of water in textile industry is used for wet processing of textile (70 per cent). Approximately 25 per cent of energy in the total textile production like fibre production, spinning, twisting, weaving, knitting, clothing manufacturing etc. is used in dyeing. About 34 per cent of energy is consumed in spinning, 23 per cent in weaving, 38 per cent in chemical wet processing and five per cent in miscellaneous processes. Power dominates consumption pattern in spinning and weaving, while thermal energy is the major factor for chemical wet processing.

    Before mechanisation, cotton was harvested manually by farmers in India and by African slaves in America. In 2012 Uzbekistan was a major exporter of cotton and uses manual labour during the harvest. Human rights groups claim that health care professionals and children are forced to pick cotton.

    Flax

    Flax is a bast fibre, which means it comes in bundles under the bark of the Linum usitatissimum plant. The plant flowers and is harvested.

  • Retting
  • Breaking
  • Scutching
  • Hackling or combing
  • It is now treated like cotton.

    Jute

    Jute is a bast fibre, which comes from the inner bark of the plants of the Corchorus genus. It is retted like flax, sundried and baled. When spinning a small amount of oil must be added to the fibre. It can be bleached and dyed. It was used for sacks and bags but is now used for the backing for carpets. Jute can be blended with other fibres to make composite fabrics and work continues in Bangladesh to refine the processes and extend the range of usage possible. In the 1970s, jute-cotton composite fabrics were known as jutton fabrics.

    Hemp

    Hemp is a bast fibre from the inner bark of Cannabis sativa. It is difficult to bleach, it is used for making cord and rope.

  • Retting
  • Separating
  • Pounding
  • Other bast fibres

    These bast fibres can also be used: kenaf, urena, ramie, nettle.

    Other leaf fibres

    Sisal is the main leaf fibre used; others are: abacá and henequen.

    Wool

    Wool comes from domesticated sheep. It forms two products, woolens and worsteds. The sheep has two sorts of wool and it is the inner coat that is used. This can be mixed with wool that has been recovered from rags. Shoddy is the term for recovered wool that is not matted, while mungo comes from felted wool. Extract is recovered chemically from mixed cotton/wool fabrics.

    The fleece is cut in one piece from the sheep.This is then skirted to remove the soiled wool, and baled. It is graded into long wool where the fibres can be up to 15 in, but anything over 2.5 inches is suitable for combing into worsteds. Fibres less than that form short wool and are described as clothing or carding wool.

    At the mill the wool is scoured in a detergent to remove grease (the yolk) and impurities. This is done mechanically in the opening machine. Vegetable matter can be removed chemically using sulphuric acid (carbonising). Washing uses a solution of soap and sodium carbonate. The wool is oiled before carding or combing.

  • Woollens: Use noils from the worsted combs, mungo and shoddy and new short wool
  • Worsteds
  • Angora
  • Silk

    The processes in silk production are similar to those of cotton but take account that reeled silk is a continuous fibre. The terms used are different.

  • Opening bales. Assorting skeins: where silk is sorted by colour, size and quality, scouring: where the silk is washed in water of 40 degrees for 12 hours to remove the natural gum, drying: either by steam heating or centrifuge, softening: by rubbing to remove any remaining hard spots.
  • Silk throwing (winding). The skeins are placed on a reel in a frame with many others. The silk is wound onto spools or bobbins.
  • Doubling and twisting. The silk is far too fine to be woven, so now it is doubled and twisted to make the warp, known as organzine and the weft, known as tram. In organzine each single is given a few twists per inch (tpi), and combine with several other singles counter twisted hard at 10 to 14 tpi. In tram the two singles are doubled with each other with a light twist, 3 to 6 tpi. Sewing thread is two tram threads, hard twisted, and machine-twist is made of three hard-twisted tram threads. Tram for the crepe process is twisted at up to 80 tpi to make it 'kick up'.
  • Stretching. The thread is tested for consistent size. Any uneven thickness is stretched out. The resulting thread is reeled into containing 500 yd to 2500 yd. The skeins are about 50 in in loop length.
  • Dyeing: the skeins are scoured again, and discoloration removed with a sulphur process. This weakens the silk. The skeins are now tinted or dyed. They are dried and rewound onto bobbins, spools and skeins. Looming, and the weaving process on power looms is the same as with cotton.
  • Weaving. The organzine is now warped. This is a similar process to in cotton. Firstly, thirty threads or so are wound onto a warping reel, and then using the warping reels, the threads are beamed. A thick layer of paper is laid between each layer on the beam to stop entangling.
  • Discussion of types of synthetic fibers

    Synthetic fibers are the result of extensive development by scientists to improve upon the naturally occurring animal and plant fibers. In general, synthetic fibers are created by forcing, or extruding, fiber forming materials through holes (called spinnerets) into the air, thus forming a thread. Before synthetic fibers were developed, cellulose fibers were made from natural cellulose, which comes from plants.

    The first artificial fiber, known as art silk from 1799 onwards, became known as viscose around 1894, and finally rayon in 1924. A similar product known as cellulose acetate was discovered in 1865. Rayon and acetate are both artificial fibers, but not truly synthetic, being made from wood. Although these artificial fibers were discovered in the mid-nineteenth century, successful modern manufacture began much later in the 1930s. Nylon, the first synthetic fiber, made its debut in the United States as a replacement for silk, and was used for parachutes and other military uses.

    The techniques used to process these fibers in yarn are essentially the same as with natural fibers, modifications have to be made as these fibers are of great length, and have no texture such as the scales in cotton and wool that aid meshing.

    References

    Textile manufacturing Wikipedia