Girish Mahajan (Editor)

Tetrathiafulvalene

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Related compounds
  
TCNQ, thiophene

Molar mass
  
204.36 g/mol

Pubchem
  
99451

Formula
  
C6H4S4

Appearance
  
Yellow solid

Tetrathiafulvalene Metastable oxidation states of tetrathiafulvalenes on the surface of

Tetrathiafulvalene is an organosulfur compound with the formula (H2C2S2C)2. Studies on this heterocyclic compound contributed to the development of molecular electronics. TTF is related to the hydrocarbon fulvalene, (C5H4)2, by replacement of four CH groups with sulfur atoms. Over 10,000 scientific publications discuss TTF and its derivatives.

Contents

Tetrathiafulvalene wwwsigmaaldrichcomcontentdamsigmaaldrichstr

Preparation

Tetrathiafulvalene Tetrathiafulvalene Stacking ChemViews Magazine ChemistryViews

The high level of interest in TTFs has spawned the development of many syntheses of TTF and its analogues. Most preparations entail the coupling of cyclic C3S2 building blocks such as 1,3-dithiole-2-thiones or the related 1,3-dithiole-2-ones. For TTF itself, the synthesis begins with the trithiocarbonate H2C2S2CS, which is S-methylated and then reduced to give H2C2S2CH(SCH3), which is treated as follows:

H
2
C
2
S
2
CH(SCH
3
)
+ HBF
4
[H
2
C
2
S
2
CH+
]BF
4
+ HSCH
3
2 [H
2
C
2
S
2
CH+
]BF
4
+ 2 Et
3
N
(H
2
C
2
S
2
C)
2
+ 2 Et
3
NHBF
4

Redox properties

Tetrathiafulvalene Tetrathiafulvalene TTF derivatives key buildingblocks for

Bulk TTF itself has unremarkable electrical properties. Distinctive properties are, however, associated with salts of its oxidized derivatives, such as salts derived from TTF+.

Tetrathiafulvalene Tetrathiafulvalene 7788tetracyanoquinodimethane salt 970

The high electrical conductivity of TTF salts can be attributed to the following features of TTF: (i) its planarity, which allows π-π stacking of its oxidized derivatives, (ii) its high symmetry, which promotes charge delocalization, thereby minimizing coulombic repulsions, and (iii) its ability to undergo oxidation at mild potentials to give a stable radical cation. Electrochemical measurements show that TTF can be oxidized twice reversibly:

TTF → TTF+
+ -
e
(E = 0.34 V) TTF+
TTF2+
+ -
e
(E = 0.78 V, vs. Ag/AgCl in MeCN solution)

Each dithiolylidene ring in TTF has 7π electrons: 2 for each sulfur atom, 1 for each sp2 carbon atom. Thus, oxidation converts each ring to an aromatic 6π-electron configuration, consequently leaving the central double bond essentially a single bond, as all π-electrons occupy ring orbitals.

History

The salt [TTF+
]Cl
was reported to be a semiconductor in 1972. Subsequently, the charge-transfer salt [TTF]TCNQ was shown to be a narrow band gap semiconductor. X-ray diffraction studies of [TTF][TCNQ] revealed stacks of partially oxidized TTF molecules adjacent to anionic stacks of TCNQ molecules. This “segregated stack” motif was unexpected and is responsible for the distinctive electrical properties, i.e. high and anisotropic electrical conductivity. Since these early discoveries, numerous analogues of TTF have been prepared. Well studied analogues include tetramethyltetrathiafulvalene (Me4TTF), tetramethylselenafulvalenes (TMTSFs), and bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF, CAS [66946-48-3]). Several tetramethyltetrathiafulvalene salts (called Fabre salts) are of some relevance as organic superconductors.

References

Tetrathiafulvalene Wikipedia