Developer(s) PetaChem Operating system | ||
Initial release May 2010; 6 years ago (2010-05) Stable release 1.9 / June 15, 2016; 9 months ago (2016-06-15) |
TeraChem is the first computational chemistry software program written completely from scratch to benefit from the new streaming processors such as graphics processing units (GPUs). The computational algorithms have been completely redesigned to exploit massive parallelism of CUDA-enabled Nvidia GPUs. The original development started at the University of Illinois at Urbana-Champaign. Due to the great potential of the developed technology, this GPU-accelerated software was subsequently commercialized. Now it is distributed by PetaChem, LLC, located in the Silicon Valley. The software package is under active development and new features are released often.
Contents
Core features
Very fast ab initio molecular dynamics and density functional theory (DFT) methods for nanoscale biomolecular systems with hundreds of atoms are arguably the most attractive features of TeraChem. Its affinity to extreme performance is also exemplified in the TeraChem motto "Chemistry at the Speed of Graphics". All the methods used are based on Gaussian orbitals, a choice made to improve performance on the limited computing capacities of modern computer hardware. More comprehensive list of features can be found on the company's website or in the user guide.
Press coverage
Media
The software is featured in a series of clips on its own YouTube channel under "GPUChem" user.
Major release history
2016
2012
2011
2010
Publication list
I. S. Ufimtsev, N. Luehr and T. J. Martinez Journal of Physical Chemistry Letters, Vol. 2, 1789-1793 (2011)
C. M. Isborn, N. Luehr, I. S. Ufimtsev and T. J. Martinez Journal of Chemical Theory and Computation, Vol. 7, 1814-1823 (2011)
N. Luehr, I. S. Ufimtsev, and T. J. Martinez Journal of Chemical Theory and Computation, Vol. 7, 949-954 (2011)
I. S. Ufimtsev and T. J. Martinez Journal of Chemical Theory and Computation, Vol. 5, 2619-2628 (2009)
I. S. Ufimtsev and T. J. Martinez Journal of Chemical Theory and Computation, Vol. 5, 1004-1015 (2009)
I. S. Ufimtsev and T. J. Martinez Journal of Chemical Theory and Computation, Vol. 4, 222-231 (2008)
I. S. Ufimtsev and T. J. Martinez Computing in Science and Engineering, Vol. 10, 26-34 (2008)
Nirupam Aich, Joseph R V Flora and Navid B Saleh Nanotechnology, Vol. 23, 055705 (2012)
Kregg D. Quarles, Cherno B. Kah, Rosi N. Gunasinghe, Ryza N. Musin, and Xiao-Qian Wang Journal of Chemical Theory Computation, Vol. 7, 2017–2020 (2011)
M. P. Andersson and S. L. S. Stipp Journal of Physical Chemistry C, Vol. 115, 10044–10055 (2011)
Rosi N. Gunasinghe, Cherno B. Kah, Kregg D. Quarles, and Xiao-Qian Wang Applied Physics Letters 98, 261906 (2011)
Xiao-Qian Wang Physical Review B 82, 153409 (2010)
Andrzej Eilmes Lecture Notes in Computer Science, 7136/2012, 276-284 (2012)
Ruben Santamaria, Juan-Antonio Mondragon-Sanchez and Xim Bokhimi J. Phys. Chem. A, ASAP (2012)