In mathematics, the tanhc function is defined as
tanhc
(
z
)
=
tanh
(
z
)
z
Imaginary part in complex plane
Im
(
tanh
(
x
+
i
y
)
x
+
i
y
)
Real part in complex plane
Re
(
tanh
(
x
+
i
y
)
x
+
i
y
)
absolute magnitude
|
tanh
(
x
+
i
y
)
x
+
i
y
|
First-order derivative
1
−
tanh
(
z
)
)
2
z
−
tanh
(
z
)
z
2
Real part of derivative
−
Re
(
−
1
−
(
tanh
(
x
+
i
y
)
)
2
x
+
i
y
+
tanh
(
x
+
i
y
)
(
x
+
i
y
)
2
)
Imaginary part of derivative
−
Im
(
−
1
−
(
tanh
(
x
+
i
y
)
)
2
x
+
i
y
+
tanh
(
x
+
i
y
)
(
x
+
i
y
)
2
)
absolute value of derivative
|
−
1
−
(
tanh
(
x
+
i
y
)
)
2
x
+
i
y
+
tanh
(
x
+
i
y
)
(
x
+
i
y
)
2
|