Sum frequency generation spectroscopy (SFG) is a technique used to analyze surfaces and interfaces. This nonlinear laser spectroscopy method was developed in 1987 and rapidly applied to deduce the composition, orientation distributions, and some structural information of molecules at gas–solid, gas–liquid and liquid–solid interfaces. In a typical SFG setup, two laser beams mix at a surface and generate an output beam with a frequency equal to the sum of the two input frequencies. SFG has advantages in its ability to be monolayer surface sensitive, ability to be performed in situ (for example aqueous surfaces and in gases), and not causing much damage to the sample surface. SFG is comparable to second harmonic generation (SFG is a more general form) and Infrared and Raman spectroscopy.
Contents
Theory
IR-visible sum frequency generation spectroscopy uses two laser beams that overlap at a surface of a material or the interface between two materials. An output beam is generated at a frequency of the sum of the two input beams. The two input beams have to be able to access the surface, and the output beam needs to be able to leave the surface to be picked up by a detector. One of the beams is a visible wavelength laser held at a constant frequency and the other is a tunable infrared laser. By tuning the IR laser, the system can scan over resonances and obtain the vibrational spectrum of the interfacial region.
Nonlinear susceptibility
For a given nonlinear optical process, the polarization
where
It is worth noting that all the even order susceptibilities become zero in centrosymmetric media. A proof of this is as follows.
Let
Adding together this equation with the original polarization equation then gives
which implies
[Note 1: The final equality can be proven by mathematical induction, by considering two cases in the inductive step; where
[Note 2: This proof holds for the case where
As a second-order nonlinear process, SFG is dependent on the 2nd order susceptibility
SFG intensity
The output beam is collected by a detector and its intensity
where
The second order susceptibility has two contributions
where
The resonating contribution is from the vibrational modes and shows changes in resonance. It can be expressed as a sum of a series of Lorentz oscillators
where
The above equations can be combined to form
which is used to model the SFG output over a range of wavenumbers. When the SFG system scans over a vibrational mode of the surface molecule, the output intensity is resonantly enhanced. In a graphical analysis of the output intensity versus wavenumber, this is represented by Lorentzian peaks. Depending on the system, inhomogeneous broadening and interference between peaks may occur. The Lorentz profile can be convoluted with a Gaussian intensity distribution to better fit the intensity distribution.
Orientation information
From the second order susceptibility, it is possible to ascertain information about the orientation of molecules at the surface.
The tensor elements can be determined by using two different polarizers, one for the electric field vector perpendicular to the plane of incidence, labeled S, and one for the electric field vector parallel to the plane of incidence, labeled P. Four combinations are sufficient: PPP, SSP, SPS, PSS, with the letters listed in decreasing frequency, so the first is for the sum frequency, the second is for the visible beam, and the last is for the infrared beam. The four combinations give rise to four different intensities given by
where index
By taking the tensor elements and applying the correct transformations, the orientation of the molecules on the surface can be found.
Experimental setup
Since SFG is a higher order function, one of the main concerns in the experimental setup is being able to generate a signal strong enough to detect, with discernible peaks and narrow bandwidths. Pico-second and femto-second pulse width lasers are used due to being pulsed lasers with high peak fields. Nd:YAG lasers are commonly used. However, the bandwidth is increased with shorter pulses, forming a tradeoff for desired properties.
Another limitation is the tunable range of the IR laser. This has been augmented by optical parametric generation (OPG), optical parametric oscillation (OPO), and optical parametric amplification (OPA) systems.
Signal strength can be improved by using special geometries, such as a total internal reflection setup which uses a prism to change the angles so they are close to the critical angles, allowing the SFG signal to be generated at its critical angle, enhancing the signal.
Common detector setups utilize a monochromator and a photomultiplier for filtering and detecting.