The concept of a stable model, or answer set, is used to define a declarative semantics for logic programs with negation as failure. This is one of several standard approaches to the meaning of negation in logic programming, along with program completion and the well-founded semantics. The stable model semantics is the basis of answer set programming.
Contents
- Motivation
- Relation to nonmonotonic logic
- Stable models
- Definition
- Example
- Programs without a unique stable model
- Properties of the stable model semantics
- Program completion
- Well founded semantics
- Representing incomplete information
- Coherent stable models
- Closed world assumption
- Programs with constraints
- Disjunctive programs
- Stable models of a set of propositional formulas
- General definition of a stable model
- Properties of the general stable model semantics
- References
Motivation
Research on the declarative semantics of negation in logic programming was motivated by the fact that the behavior of SLDNF resolution — the generalization of SLD resolution used by Prolog in the presence of negation in the bodies of rules — does not fully match the truth tables familiar from classical propositional logic. Consider, for instance, the program
Given this program, the query
On the other hand, the rules of the given program can be viewed as propositional formulas if we identify the comma with conjunction
If we calculate the truth values of the rules of the program for the truth assignment shown above then we will see that each rule gets the value T. In other words, that assignment is a model of the program. But this program has also other models, for instance
Thus one of the models of the given program is special in the sense that it correctly represents the behavior of SLDNF resolution. What are the mathematical properties of that model that make it special? An answer to this question is provided by the definition of a stable model.
Relation to nonmonotonic logic
The meaning of negation in logic programs is closely related to two theories of nonmonotonic reasoning — autoepistemic logic and default logic. The discovery of these relationships was a key step towards the invention of the stable model semantics.
The syntax of autoepistemic logic uses a modal operator that allows us to distinguish between what is true and what is believed. Michael Gelfond [1987] proposed to read
In default logic, a default is similar to an inference rule, except that it includes, besides its premises and conclusion, a list of formulas called justifications. A default can be used to derive its conclusion under the assumption that its justifications are consistent with what is currently believed. Nicole Bidoit and Christine Froidevaux [1987] proposed to treat negated atoms in the bodies of rules as justifications. For instance, the rule
can be understood as the default that allows us to derive
Stable models
The definition of a stable model below, reproduced from [Gelfond and Lifschitz, 1988], uses two conventions. First, a truth assignment is identified with the set of atoms that get the value T. For instance, the truth assignment
is identified with the set
Second, a logic program with variables is viewed as shorthand for the set of all ground instances of its rules, that is, for the result of substituting variable-free terms for variables in the rules of the program in all possible ways. For instance, the logic programming definition of even numbers
is understood as the result of replacing
in all possible ways. The result is the infinite ground program
Definition
Let
where
For any set
belongs to
We say that
Example
To illustrate these definitions, let us check that
The reduct of this program relative to
(Indeed, since
Checking in the same way the other 15 sets consisting of the atoms
The stable model of the reduct is
Programs without a unique stable model
A program with negation may have many stable models or no stable models. For instance, the program
has two stable models
has no stable models.
If we think of the stable model semantics as a description of the behavior of Prolog in the presence of negation then programs without a unique stable model can be judged unsatisfactory: they do not provide an unambiguous specification for Prolog-style query answering. For instance, the two programs above are not reasonable as Prolog programs — SLDNF resolution does not terminate on them.
But the use of stable models in answer set programming provides a different perspective on such programs. In that programming paradigm, a given search problem is represented by a logic program so that the stable models of the program correspond to solutions. Then programs with many stable models correspond to problems with many solutions, and programs without stable models correspond to unsolvable problems. For instance, the eight queens puzzle has 92 solutions; to solve it using answer set programming, we encode it by a logic program with 92 stable models. From this point of view, logic programs with exactly one stable model are rather special in answer set programming, like polynomials with exactly one root in algebra.
Properties of the stable model semantics
In this section, as in the definition of a stable model above, by a logic program we mean a set of rules of the form
where
Head atoms: If an atom
Minimality: Any stable model of a logic program
The antichain property: If
NP-completeness: Testing whether a finite ground logic program has a stable model is NP-complete.
Program completion
Any stable model of a finite ground program is not only a model of the program itself, but also a model of its completion [Marek and Subrahmanian, 1989]. The converse, however, is not true. For instance, the completion of the one-rule program
is the tautology
Fangzhen Lin and Yuting Zhao [2004] showed how to make the completion of a nontight program stronger so that all its nonstable models will be eliminated. The additional formulas that they add to the completion are called loop formulas.
Well-founded semantics
The well-founded model of a logic program partitions all ground atoms into three sets: true, false and unknown. If an atom is true in the well-founded model of
has two stable models,
Furthermore, if an atom is false in the well-founded model of a program then it does not belong to any of its stable models. Thus the well-founded model of a logic program provides a lower bound on the intersection of its stable models and an upper bound on their union.
Representing incomplete information
From the perspective of knowledge representation, a set of ground atoms can be thought of as a description of a complete state of knowledge: the atoms that belong to the set are known to be true, and the atoms that do not belong to the set are known to be false. A possibly incomplete state of knowledge can be described using a consistent but possibly incomplete set of literals; if an atom
In the context of logic programming, this idea leads to the need to distinguish between two kinds of negation — negation as failure, discussed above, and strong negation, which is denoted here by
is not an adequate representation of this idea: it says that it's okay to cross in the absence of information about an approaching train. The weaker rule, that uses strong negation in the body, is preferable:
It says that it's okay to cross if we know that no train is approaching.
Coherent stable models
To incorporate strong negation in the theory of stable models, Gelfond and Lifschitz [1991] allowed each of the expressions
to be either an atom or an atom prefixed with the strong negation symbol. Instead of stable models, this generalization uses answer sets, which may include both atoms and atoms prefixed with strong negation.
An alternative approach [Ferraris and Lifschitz, 2005] treats strong negation as a part of an atom, and it does not require any changes in the definition of a stable model. In this theory of strong negation, we distinguish between atoms of two kinds, positive and negative, and assume that each negative atom is an expression of the form
For instance, the program
has two stable models,
Closed world assumption
According to [Gelfond and Lifschitz, 1991], the closed world assumption for a predicate
(the relation
consists of 2 positive atoms
and 14 negative atoms
i.e., the strong negations of all other positive ground atoms formed from
A logic program with strong negation can include the closed world assumption rules for some of its predicates and leave the other predicates in the realm of the open world assumption.
Programs with constraints
The stable model semantics has been generalized to many kinds of logic programs other than collections of "traditional" rules discussed above — rules of the form
where
Recall that a traditional rule can be viewed as alternative notation for a propositional formula if we identify the comma with conjunction
We can now extend the definition of a stable model to programs with constraints. As in the case of traditional programs, we begin with programs that do not contain negation. Such a program may be inconsistent; then we say that it has no stable models. If such a program
Next, stable models of arbitrary programs with constraints are defined using reducts, formed in the same way as in the case of traditional programs (see the definition of a stable model above). A set
The properties of the stable model semantics stated above for traditional programs hold in the presence of constraints as well.
Constraints play an important role in answer set programming because adding a constraint to a logic program
Disjunctive programs
In a disjunctive rule, the head may be the disjunction of several atoms:
(the semicolon is viewed as alternative notation for disjunction
For example, the set
because it is one of two minimal models of the reduct
The program above has one more stable model,
As in the case of traditional programs, each element of any stable model of a disjunctive program
Stable models of a set of propositional formulas
Rules, and even disjunctive rules, have a rather special syntactic form, in comparison with arbitrary propositional formulas. Each disjunctive rule is essentially an implication such that its antecedent (the body of the rule) is a conjunction of literals, and its consequent (head) is a disjunction of atoms. David Pearce [1997] and Paolo Ferraris [2005] showed how to extend the definition of a stable model to sets of arbitrary propositional formulas. This generalization has applications to answer set programming.
Pearce's formulation looks very different from the original definition of a stable model. Instead of reducts, it refers to equilibrium logic — a system of nonmonotonic logic based on Kripke models. Ferraris's formulation, on the other hand, is based on reducts, although the process of constructing the reduct that it uses differs from the one described above. The two approaches to defining stable models for sets of propositional formulas are equivalent to each other.
General definition of a stable model
According to [Ferraris, 2005], the reduct of a propositional formula
For instance, the reduct of the set
relative to
Since
We have seen that
Properties of the general stable model semantics
The theorem asserting that all elements of any stable model of a program
The minimality and the antichain property of stable models of a traditional program do not hold in the general case. For instance, (the singleton set consisting of) the formula
has two stable models,
Testing whether a finite set of propositional formulas has a stable model is