Girish Mahajan (Editor)

Stable manifold theorem

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In mathematics, especially in the study of dynamical systems and differential equations, the stable manifold theorem is an important result about the structure of the set of orbits approaching a given hyperbolic fixed point.

Stable manifold theorem

Let

f : U R n R n

be a smooth map with hyperbolic fixed point at p . We denote by W s ( p ) the stable set and by W u ( p ) the unstable set of p .

The theorem states that

  • W s ( p ) is a smooth manifold and its tangent space has the same dimension as the stable space of the linearization of f at p .
  • W u ( p ) is a smooth manifold and its tangent space has the same dimension as the unstable space of the linearization of f at p .
  • Accordingly W s ( p ) is a stable manifold and W u ( p ) is an unstable manifold.

    References

    Stable manifold theorem Wikipedia


    Similar Topics