Suvarna Garge (Editor)

Spectrometer

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Spectrometer

A spectrometer ( /spɛkˈtrɒmɪtər/) is a scientific instrument originally used to split light into an array of separate colors, called a spectrum. Spectrometers were developed in early studies of physics, astronomy, and chemistry. The capability of spectroscopy to determine chemical composition drove its advancement and continues to be one of their primary uses. Spectrometers are used in astronomy to analyze the chemical composition of stars and planets, and spectrometers gather data on the origin of the universe.

Contents

The concept of a spectrometer now encompasses instruments that do not examine light. Spectrometers separate particles, atoms, and molecules by their mass, momentum, or energy. These types of spectrometers are used in chemical analysis and particle physics.

Optical spectrometer

Optical spectrometers (often simply called "spectrometers"), in particular, show the intensity of light as a function of wavelength or of frequency. The deflection is produced either by refraction in a prism or by diffraction in a diffraction grating.

These spectrometers utilize the phenomenon of optical dispersion. The light from a source can consist of a continuous spectrum, an emission spectrum (bright lines), or an absorption spectrum (dark lines). Because each element leaves its spectral signature in the pattern of lines observed, a spectral analysis can reveal the composition of the object being analyzed.

Mass spectrometer

A mass spectrometer is an analytical instrument that is used to identify the amount and type of chemicals present in a sample by measuring the mass-to-charge ratio and abundance of gas-phase ions.

Time-of-flight spectrometer

The energy spectrum of particles of known mass can also be measured by determining the time of flight between two detectors (and hence, the velocity) in a time-of-flight spectrometer. Alternatively, if the velocity is known, masses can be determined in a time-of-flight mass spectrometer.

Magnetic spectrometer

When a fast charged particle (charge q, mass m) enters a constant magnetic field B at right angles, it is deflected into a circular path of radius r, due to the Lorentz force. The momentum p of the particle is then given by

p = m v = q B r ,

where m and v are mass and velocity of the particle. The focussing principle of the oldest and simplest magnetic spectrometer, the semicircular spectrometer, invented by J. K. Danisz, is shown on the left. A constant magnetic field is perpendicular to the page. Charged particles of momentum p that pass the slit are deflected into circular paths of radius r = p/qB. It turns out that they all hit the horizontal line at nearly the same place, the focus; here a particle counter should be placed. Varying B, this makes possible to measure the energy spectrum of alpha particles in an alpha particle spectrometer, of beta particles in a beta particle spectrometer, of particles (e.g., fast ions) in a particle spectrometer, or to measure the relative content of the various masses in a mass spectrometer.

Since Danysz' time, many types of magnetic spectrometers more complicated than the semicircular type have been devised.

Resolution

Generally, the resolution of an instrument tells us how well two close-lying energies (or wavelengths, or frequencies, or masses) can be resolved. Generally, for an instrument with mechanical slits, higher resolution will mean lower intensity.

References

Spectrometer Wikipedia


Similar Topics