Supriya Ghosh (Editor)

Social robot

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

A social robot is an autonomous robot that interacts and communicates with humans or other autonomous physical agents by following social behaviors and rules attached to its role. This definition suggests that a social robot must have a physical embodiment (screen characters would be excluded). Recently some robots have been developed that use a screen to display the robot's head. Such a machine is on the borderline of being a robot. If the body only functions as a holder for the screen then such a system cannot be considered a robot, but if the robot has some physical motor and sensor abilities then such a system could be considered a robot.

Contents

Background

While robots have often been described as possessing social qualities (see for example the tortoises developed by William Grey Walter in the 1950s), social robotics is a fairly recent branch of robotics. Since the early 1990s artificial intelligence and robotics researchers have developed robots which explicitly engage on a social level. Notable researchers include Cynthia Breazeal, Tony Belpaeme, Aude Billard, Kerstin Dautenhahn, Yiannis Demiris, Maja Mataric, Javier Movellan, Brian Scassellati and Dean Weber. Also related is the Kansai engineering movement in Japanese science and technology --- for social robotics, see especially work by Takayuki Kanda, Hideki Kozima, Hiroshi Ishiguro and Tomio Watanabe.

Designing an autonomous social robot is particularly challenging, as the robot needs to correctly interpret people's action and respond appropriately, which is currently not yet possible. As such, many social robots are partially or fully remote controlled, a method often referred to as Wizard of Oz, after the character in the L. Frank Baum book. Wizard of Oz studies are useful to evaluate how people respond to social robots.

Definition

A robot is defined in the International Standard of Organization as a reprogrammable, multifunctional manipulator designed to move material, parts, tools or specialized devices through variable programmed motions for performance of a variety of tasks. The definition states that a social robot should communicate and interact with humans and embodied agents. (Source?) These are likely to be cooperative, but the definition is not limited to this situation. Moreover, uncooperative behavior can be considered social in certain situations. The robot could, for example, exhibit competitive behavior within the framework of a game. The robot could also interact with a minimum or no communication. It could, for example, hand tools to an astronaut working on a space station. However, it is likely that some communication will be necessary at some point. Two suggested ultimate requirements for social robots are the Turing Test to determine the robot's communication skills and Isaac Asimov's Three Laws of Robotics for its behavior (The usefulness to apply these requirements in a real-world application, especially in the case of Asimov's laws, still is disputed and maybe not possible at all). However, a consequence of this viewpoint is that a robot that only interacts and communicates with other robots would not be considered to be a social robot: Being social is bound to humans and their society which defines necessary social values, norms and standards. This results in a cultural dependency of social robots since social values, norms and standards differ between cultures.

This brings us directly to the last part of the definition. A social robot must interact within the social rules attached to its role. The role and its rules are defined through society. For example, a robotic butler for humans would have to comply with established rules of good service. It should be anticipating, reliable and most of all discreet. A social robot must be aware of this and comply with it. However, social robots that interact with other autonomous robots would also behave and interact according to non-human conventions. In most social robots the complexity of human-to-human interaction will be gradually approached with the advancement of the technology of androids (a form of humanoid robots) and implementation of a variety of more human-like communication skills

An example of social robot would be Kaspar, designed by University of Hertfordshire to help children with autism learn responses from the robot through games and interactive play.

Research Laboratories

  • Australia
  • Innovation and Enterprise Research Laboratory (The Magic Lab), University of Technology Sydney
  • Canada
  • Autonomous Systems and Biomechatronics Lab (ASB Lab), University of Toronto
  • China
  • Multi-Agent Systems Lab, University of Science and Technology of China
  • Germany
  • Social Robotics Lab, University of Freiburg
  • Japan
  • Interactions and Communication Design (ICD) Lab, Toyohashi University of Technology
  • ATR Intelligent Robotics and Communication Laboratories, Kyoto
  • Portugal
  • Intelligent Agents and Synthetic Characters Group, Lisbon Tech, University of Lisbon
  • Singapore
  • A*STAR Social Robotics
  • Social Robotics Lab, National University of Singapore
  • The Institute for Media Innovation (IMI), Nanyang Technological University
  • Spain
  • Social Robots Group, RoboticsLab, University Carlos III of Madrid
  • Sweden
  • Department for Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm
  • United Kingdom
  • Adaptive Systems Research Group, University of Hertfordshire, Hatfield
  • Personal Robotics Lab, Imperial College London
  • USA
  • Interaction Lab, University of Southern California
  • Personal Robots Group, MIT Media Lab
  • Social Robotics Lab, Yale University
  • International Journals

  • International Journal of Social Robotics
  • Interaction Studies: Social Behaviour and Communication in Biological and Artificial Systems
  • References

    Social robot Wikipedia