In mathematics, the Sinhc function appears frequently in papers about optical scattering, Heisenberg Spacetime and hyperbolic geometry. It is defined as
  
    
      
        Sinhc
        
        (
        z
        )
        =
        
          
            
              sinh
              
              (
              z
              )
            
            z
          
        
      
    
    
  
It is a solution of the following differential equation:
  
    
      
        w
        (
        z
        )
        z
        −
        2
        
        
          
            d
            
              d
              z
            
          
        
        w
        (
        z
        )
        −
        z
        
          
            
              d
              
                2
              
            
            
              d
              
                z
                
                  2
                
              
            
          
        
        w
        (
        z
        )
        =
        0
      
    
    
  
Imaginary part in complex plane
  
    
      
        Im
        
        
          (
          
            
              
                sinh
                
                (
                x
                +
                i
                y
                )
              
              
                x
                +
                i
                y
              
            
          
          )
        
      
    
    
  
Real part in complex plane
  
    
      
        Re
        
        
          (
          
            
              
                sinh
                
                (
                x
                +
                i
                y
                )
              
              
                x
                +
                i
                y
              
            
          
          )
        
      
    
    
  
absolute magnitude
  
    
      
        
          |
          
            
              
                sinh
                
                (
                x
                +
                i
                y
                )
              
              
                x
                +
                i
                y
              
            
          
          |
        
      
    
    
  
First-order derivative
  
    
      
        
          
            
              1
              −
              sinh
              
              (
              z
              )
              
                )
                
                  2
                
              
            
            z
          
        
        −
        
          
            
              sinh
              
              (
              z
              )
            
            
              z
              
                2
              
            
          
        
      
    
    
  
Real part of derivative
  
    
      
        −
        Re
        
        
          (
          −
          
            
              
                1
                −
                (
                sinh
                
                (
                x
                +
                i
                y
                )
                
                  )
                  
                    2
                  
                
              
              
                x
                +
                i
                y
              
            
          
          +
          
            
              
                sinh
                
                (
                x
                +
                i
                y
                )
              
              
                (
                x
                +
                i
                y
                
                  )
                  
                    2
                  
                
              
            
          
          )
        
      
    
    
  
Imaginary part of derivative
  
    
      
        −
        Im
        
        
          (
          −
          
            
              
                1
                −
                (
                sinh
                
                (
                x
                +
                i
                y
                )
                
                  )
                  
                    2
                  
                
              
              
                x
                +
                i
                y
              
            
          
          +
          
            
              
                sinh
                
                (
                x
                +
                i
                y
                )
              
              
                (
                x
                +
                i
                y
                
                  )
                  
                    2
                  
                
              
            
          
          )
        
      
    
    
  
absolute value of derivative
  
    
      
        
          |
          −
          
            
              
                1
                −
                (
                sinh
                
                (
                x
                +
                i
                y
                )
                
                  )
                  
                    2
                  
                
              
              
                x
                +
                i
                y
              
            
          
          +
          
            
              
                sinh
                
                (
                x
                +
                i
                y
                )
              
              
                (
                x
                +
                i
                y
                
                  )
                  
                    2
                  
                
              
            
          
          |