In study of partial differential equations, particularly fluid dynamics, a similarity solution is a form of solution in which at least one co-ordinate lacks a distinguished origin; more physically, it describes a flow which 'looks the same' either at all times, or at all length scales. These include, for example, the Blasius boundary layer or the Sedov-Taylor shell.
Contents
Concept
A powerful tool in physics is the concept of dimensional analysis and scaling laws; by looking at the physical effects present in a system we may estimate their size and hence which, for example, might be neglected. If we have catalogued these effects we will occasionally find that the system has not fixed a natural lengthscale (timescale), but that the solution depends on space (time). It is then necessary to construct a lengthscale (timescale) using space (time) and the other dimensional quantities present - such as the viscosity 
  
    
      
        
Example - The impulsively started plate
Consider a semi-infinite domain bounded by a rigid wall and filled with viscous fluid. At time 
  
    
      
        
  
    
      
        
and that the plate has no effect on the fluid at infinity
  
    
      
        
Now, if we examine the Navier-Stokes equations
  
    
      
        
we can observe that this flow will be rectilinear, with gradients in the 
  
    
      
        
  
    
      
        
          
            
and we may apply scaling arguments to show that
  
    
      
        
          
which gives us the scaling of the 
  
    
      
        
  
    
      
        
This allows us to pose a self-similar ansatz such that, with 
  
    
      
        
  
    
      
        
We have now extracted all of the relevant physics and need only solve the equations; for many cases this will need to be done numerically. This equation is
  
    
      
        
with solution satisfying the boundary conditions that
  
    
      
        
which is a self-similar solution of the first kind.
