In the mathematical field of topology, the signature is an integer invariant which is defined for an oriented manifold M of dimension d=4k divisible by four (doubly even-dimensional).
Contents
This invariant of a manifold has been studied in detail, starting with Rokhlin's theorem for 4-manifolds.
Definition
Given a connected and oriented manifold M of dimension 4k, the cup product gives rise to a quadratic form Q on the 'middle' real cohomology group
H2k(M,Z).The basic identity for the cup product
shows that with p = q = 2k the product is symmetric. It takes values in
H4k(M,Z).If we assume also that M is compact, Poincaré duality identifies this with
H0(M,Z),which can be identified with Z. Therefore cup product, under these hypotheses, does give rise to a symmetric bilinear form on H2k(M,Z); and therefore to a quadratic form Q. The form Q is non-degenerate due to Poincaré duality, as it pairs non-degenerately with itself. More generally, the signature can be defined in this way for any general compact polyhedron with 4n-dimensional Poincaré duality.
The signature of M is by definition the signature of Q, an ordered triple according to its definition. If M is not connected, its signature is defined to be the sum of the signatures of its connected components.
Other dimensions
If M has dimension not divisible by 4, its signature is usually defined to be 0. There are alternative generalization in L-theory: the signature can be interpreted as the 4k-dimensional (simply-connected) symmetric L-group
Kervaire invariant
When
Properties
René Thom (1954) showed that the signature of a manifold is a cobordism invariant, and in particular is given by some linear combination of its Pontryagin numbers. Friedrich Hirzebruch (1954) found an explicit expression for this linear combination as the L genus of the manifold. William Browder (1962) proved that a simply-connected compact polyhedron with 4n-dimensional Poincaré duality is homotopy equivalent to a manifold if and only if its signature satisfies the expression of the Hirzebruch signature theorem.