Girish Mahajan (Editor)

Shear thinning

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Shear thinning

In rheology, shear thinning is the non-Newtonian behavior of fluids whose viscosity decreases under shear strain. It is sometimes considered synonymous for pseudoplastic behaviour, and is usually defined as excluding time-dependent effects, such as thixotropy. Shear-thinning behaviour is generally not seen in pure liquids with low molecular mass, or ideal solutions of small molecules like sucrose or sodium chloride, but is often seen in polymer solutions and molten polymers, and complex fluids and suspensions like ketchup, whipped cream, blood, paint, and nail polish.

Contents

Relationship with thixotropy

Some authors consider shear-thinning to be a special case of thixotropic behaviour, because the recovery of the microstructure of the liquid to its initial state will always require a non-zero time. When the recovery of viscosity after disturbance is very rapid however, the observed behaviour is classic shear-thinning or pseudoplasticity, because as soon as the shear is removed, the viscosity returns to normal. When it takes a measurable time for the viscosity to recover, thixotropic behaviour is observed. When describing the viscosity of liquids, however, it is therefore useful to distinguish shear-thinning (pseudoplastic) behaviour from thixotropic behaviour, where the viscosity at all shear rates is decreased for some duration after agitation: both of these effects can often be seen separately in the same liquid.

Everyday examples

Modern paints are examples of pseudoplastic materials. When modern paints are applied the shear created by the brush or roller will allow them to thin and wet out the surface evenly. Once applied the paints regain their higher viscosity which avoids drips and runs.

Ketchup is a shear-thinning fluid, caused by the addition of a relatively small amount of Xanthan gum - usually 0.5%.

References

Shear thinning Wikipedia


Similar Topics