A separable partial differential equation (PDE) is one that can be broken into a set of separate equations of lower dimensionality (fewer independent variables) by a method of separation of variables. This generally relies upon the problem having some special form or symmetry. In this way, the PDE can be solved by solving a set of simpler PDEs, or even ordinary differential equations (ODEs) if the problem can be broken down into one-dimensional equations.
The most common form of separation of variables is simple separation of variables in which a solution is obtained by assuming a solution of the form given by a product of functions of each individual coordinate.There is a special form of separation of variables called
(This should not be confused with the case of a separable ODE, which refers to a somewhat different class of problems that can be broken into a pair of integrals; see separation of variables.)
Example
For example, consider the time-independent Schrödinger equation
for the function
then it turns out that the problem can be separated into three one-dimensional ODEs for functions