In mathematics, a separable algebra is a kind of semisimple algebra. It is a generalization to associative algebras of the notion of a separable field extension.
Contents
Definition and First Properties
Let K be a field. An associative K-algebra A is said to be separable if for every field extension
There is a classification theorem for separable algebras: separable algebras are the same as finite products of matrix algebras over finite-dimensional division algebras whose centers are finite-dimensional separable field extensions of the field K. If K is a perfect field --- for example a field of characteristic zero, or a finite field, or an algebraically closed field --- then every extension of K is separable. As a result, if K is a perfect field, separable algebras are the same as finite products of matrix algebras over finite-dimensional division algebras over field K. In other words, if K is a perfect field, there is no difference between a separable algebra over K and a finite-dimensional semisimple algebra over K.
There are a several equivalent characterizations of separable algebras. First, an algebra A is separable if and only if there exists an element
in the enveloping algebra
and ap = pa for all a in A. Such an element p is called a separability idempotent, since it satisfies
Second, an algebra A is separable if and only if it is projective when considered as a left module of
Third, an algebra A is separable if and only if it is flat when considered as a right module of
Furthermore, a result of Eilenberg and Nakayama has that any separable algebra can be given the structure of a symmetric Frobenius algebra. Since the underlying vector space of a Frobenius algebra is isomorphic to its dual, any Frobenius algebra is necessarily finite dimensional, and so the same is true for separable algebras.
A separable algebra is said to be strongly separable if there exists a separability idempotent that is symmetric, meaning
An algebra is strongly separable if and only if its trace form is nondegenerate, thus making the algebra into a special Frobenius algebra.
Commutative separable algebras
If
Examples
If K is a field and G is a finite group such that the order of G is invertible in K, then the group ring K[G] is a separable K-algebra. A separability idempotent is given by
Separable extensions for noncommutative rings
Let R be an associative ring with unit 1, and S a subring of R containing 1. Notice that an R-R-bimodule (see module theory and homological algebra) restricts to an S-S-bimodule. The ring extension R over S is said to be a separable extension if all short exact sequences of R-R-bimodules that are split as R-S-bimodules also split as R-R-bimodules. For example, the multiplication mapping m :
Equivalently, the relative Hochschild cohomology groups
An interesting theorem in the area is that of J. Cuadra that a separable Hopf-Galois extension R | S has finitely generated natural S-module R. A fundamental fact about a separable extension R | S is that it is left or right semisimple extension: a short exact sequence of left or right R-modules that is split as S-modules, is split as R-modules. In terms of G. Hochschild's relative homological algebra, one says that all R-modules are relative (R,S)-projective. Usually relative properties of subrings or ring extensions, such as the notion of separable extension, serve to promote theorems that say that the over-ring shares a property of the subring. For example, a separable extension R of a semisimple algebra S has R semisimple, which follows from the preceding discussion.
There is the celebrated Jans theorem that a finite group algebra A over a field of characteristic p is of finite representation type if and only if its Sylow p-subgroup is cyclic: the clearest proof is to note this fact for p-groups, then note that the group algebra is a separable extension of its Sylow p-subgroup algebra B as the index is coprime to the characteristic. The separability condition above will imply every finitely generated A-module M is isomorphic to a direct summand in its restricted, induced module. But if B has finite representation type, the restricted module is uniquely a direct sum of multiples of finitely many indecomposables, which induce to a finite number of constituent indecomposable modules of which M is a direct sum. Hence A is of finite representation type if B is. The converse is proven by a similar argument noting that every subgroup algebra B is a B-bimodule direct summand of a group algebra A.