In arithmetic geometry, the Selmer group, named in honor of the work of Selmer (1951) by Cassels (1962), is a group constructed from an isogeny of abelian varieties.
Contents
The Selmer group of an isogeny
The Selmer group of an abelian variety A with respect to an isogeny f : A → B of abelian varieties can be defined in terms of Galois cohomology as
where Av[f] denotes the f-torsion of Av and
The Selmer group in the middle of this exact sequence is finite and effectively computable. This implies the weak Mordell–Weil theorem that its subgroup B(K)/f(A(K)) is finite. There is a notorious problem about whether this subgroup can be effectively computed: there is a procedure for computing it that will terminate with the correct answer if there is some prime p such that the p-component of the Tate–Shafarevich group is finite. It is conjectured that the Tate–Shafarevich group is in fact finite, in which case any prime p would work. However, if (as seems unlikely) the Tate–Shafarevich group has an infinite p-component for every prime p, then the procedure may never terminate.
Greenberg (1994) has generalized the notion of Selmer group to more general p-adic Galois representations and to p-adic variations of motives in the context of Iwasawa theory.
The Selmer group of a finite Galois module
More generally one can define the Selmer group of a finite Galois module M (such as the kernel of an isogeny) as the elements of H1(GK,M) that have images inside certain given subgroups of H1(GKv,M).