In number theory, the second Hardy–Littlewood conjecture concerns the number of primes in intervals. The conjecture states that
for x, y ≥ 2, where π(x) denotes the prime-counting function, giving the number of prime numbers up to and including x.
This means that the number of primes from x + 1 to x + y is always less than or equal to the number of primes from 1 to y. This was proved to be inconsistent with the first Hardy–Littlewood conjecture on prime k-tuples, and the first violation is expected to likely occur for very large values of x. For example, an admissible k-tuple (or prime constellation) of 447 primes can be found in an interval of y = 3159 integers, while π(3159) = 446. If the first Hardy–Littlewood conjecture holds, then the first such k-tuple is expected for x greater than 1.5 × 10174 but less than 2.2 × 101198.